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Abstract 

Background Sepsis-associated encephalopathy (SAE) is characterized by brain dysfunction in the context of sepsis 
and frequently leads to significant cognitive and neurological impairments, as well as an elevated risk of mortality. 
Accurate diagnosis of SAE is crucial for the timely initiation of optimal treatment and appropriate patient manage-
ment. Neurogenic biomarkers hold promise as reliable serum diagnostic tools for the detection and longitudinal 
monitoring of SAE. This meta-analysis seeks to evaluate the diagnostic and prognostic utility of serum neurogenic 
biomarkers in patients with SAE.

Methods The study protocol was registered in the PROSPERO database (CRD42023408312) and conformed 
to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. A meta-analysis 
was conducted to comprehensively and critically evaluate the existing body of evidence regarding the use of serum 
neurogenic biomarkers: neuron-specific enolase (NSE), ubiquitin C-terminal hydrolase-L1 (UCH-L1), Tau, S100 calcium-
binding protein β (S100β), and glial fibrillary acidic protein (GFAP) for the diagnosis and risk assessment of fatality 
in SAE. We conducted a systematic search of electronic bibliographic databases, including PubMed, Web of Sci-
ence, Embase, Cochrane databases, CNKI, CQVIP, and WFSD. The quality and risk of bias of the selected studies were 
assessed using the QUADAS-2 tool. For biomarkers reported in two or more studies, pooled standardized mean differ-
ences and 95% confidence intervals were calculated. Heterogeneity among the included studies was examined using 
the I2 statistic and random-effects model was applied owing to large heterogeneity.

Results Forty-two studies were included in our meta-analysis. The levels of serum neurogenic biomarkers were 
significantly higher in patients with SAE as compared to septic patients with no-encephalopathy (NE): NSE (standard-
ized mean difference (SMD) 1.98 (95% CI 1.55–2.42), P < 0.00001); UCH-L1 (SMD 1.75 (95% CI 0.90–2.59), P < 0.0001); 
Tau (SMD 1.14 (95% CI 1.01–1.28), P < 0.00001); S100β (SMD 1.82 (95% CI 1.45–2.19), P < 0.00001); and GFAP (SMD 
3.63 (95% CI 1.85–5.41), P < 0.0001). In addition, significantly lower serum neurogenic biomarkers levels were noted 
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in septic patients with survivors as compared to non-survivors: NSE (SMD − 1.87 (95% CI − 2.43 to − 1.32), P < 0.00001); 
UCH-L1 (SMD − 1. 71 (95% CI − 2.24 to − 1.19), P < 0.00001); Tau (SMD − 0.57 (95% CI − 0.79 to − 0.35), P < 0.00001); S100β 
(SMD − 1.34 (95% CI − 1.88 to − 0.80), P < 0.00001). However, no significant differences in serum GFAP levels [SMD -7.98 
(95% CI − 22.23–6.27), P = 0.27) were found between the surviving and non-surviving groups.

Conclusion The increased serum neurogenic biomarkers may be predictive of SAE and mortality for septic patients, 
which are expected to be applied as a reliable blood-based diagnostic tool for detection and longitudinal monitoring 
in SAE patients. However, results should be interpreted with caution due to the high heterogeneity among studies.

Highlights 

1. This is the first systematic review and meta-analysis to evaluate serum neurogenic biomarkers potential in patients 
with sepsis-associated encephalopathy (SAE) and has the possibility of informing future clinical practice.

2. We used appropriate methodologies and quality assessment tools that may feed into an evidence-based clinical 
practice.

3. Serum neurogenic biomarkers may serve as a reliable blood-based diagnostic tool in SAE, which may provide a sim-
ple and effective reference for clinical treatment decisions.

Keywords Sepsis-associated encephalopathy, NSE, S100β, GFAP, UCH-1, Tau, Biomarker

Introduction
Sepsis is a leading cause of intensive care unit (ICU) 
admissions worldwide. Although the International 
Guidelines for Management of Sepsis and Septic Shock 
has been continuously updated from sepsis 1.0 in 1991 
to sepsis 3.0 in 2016, and many new technologies for 
the treatment of sepsis have been emerged, no effec-
tive methods have been found to reduce the incidence 
and mortality of sepsis and sepsis-associated compli-
cations [1, 2]. Sepsis-associated encephalopathy (SAE) 
is characterized by acute cognitive impairment which 
has been linked to elevated mortality rates, prolonged 
hospital stays, and persistent cognitive deficits [3]. 
SAE is diagnosed through EEG abnormalities, men-
tal status changes, clinical history, physical exams, lab 
tests, and neuroimaging. The cause of SAE is complex 
and not fully understood, making diagnosis and treat-
ment difficult [4]. A growing amount of attention has 
been paid to precision medicine in recent years due to 
the continuous development of medical science, and 
there has been a growing interest in the discovery of 
different types of biomarkers with the development of 
precision medicine. A series of commonly used neuro-
genic biomarkers has garnered extensive use in inves-
tigating neuropsychiatric disorders including traumatic 
brain injuries (TBI), hypoxic-ischemic brain injuries, 
brain tumors, cerebral infarctions, cerebral hemor-
rhages, epilepsy, and ischemia/reperfusion cerebral 
injuries after cardiac arrest [5, 6]. The identification of 
biomarker signatures linked to specific aspects of SAE 
pathophysiology holds potential clinical significance in 
enhancing the characterization and risk stratification 
of TBI, thereby improving medical decision-making 

and enabling personalized therapeutic interventions. 
Consequently, there has been a concentrated effort in 
recent years to discover valuable serum biomarkers for 
SAE, resulting in the emergence of numerous potential 
candidates. As for currently used neurogenic biomark-
ers to diagnose SAE and assess its severity in clinical 
evaluations, they can be divided into two categories: 
neuronal cell damage markers including neuron-spe-
cific enolase (NSE), ubiquitin C-terminal hydrolase 
L1 (UCH-L1), and Tau; and glial cell damage markers 
including S100 calcium-binding protein β (S100β) and 
glial fibrillary acidic protein (GFAP) [7, 8].

The integration of neurogenic biomarkers tests holds 
promise for improving the diagnosis and prognosis of 
SAE, ultimately leading to better clinical management 
and patient outcomes. Currently, the field of medicine 
has transitioned from the traditional empirical medi-
cine to the evidence-based medicine. Even so, serum 
neurogenic biomarkers in SAE are currently focused on 
research studies, and providing high-quality evidence 
for their adoption and routine use in clinical practice is 
paramount. Therefore, this systematic review and meta-
analysis were undertaken to comprehensively summa-
rize and critically evaluate the current body of evidence 
regarding the utilization of serum neurogenic biomarkers 
for the diagnosis and prognosis of SAE. A meta-analysis 
has the capacity to leverage the volume of data gathered 
from individual studies and allows for the examination 
of potential confounding factors that may influence the 
diagnostic and prognosis performance of biomarkers, as 
well as the detection of variations in the accuracy of dif-
ferent biomarker tests. The purpose of our meta-analysis 
was to evaluate the potential diagnostic and prognostic 
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value of serum neurogenic biomarkers including NSE, 
UCH-L1, Tau, S100β, and GFAP in patients with SAE.

Methods
Protocol/registration
Before conducting the analysis, we developed a proto-
col and registered it in PROSPERO (an international 
prospective register of systematic reviews (http:// www. 
crd. york. ac. uk/ PROSP ERO/; Registration No. CRD 
42023408312). The study was conducted according to 
the original protocol registered with PROSPERO. Results 
were reported following Preferred Reporting Items for 
Systematic Reviews and Meta Analyses (PRISMA) 2020 
[9].

Search strategy
We searched the main English and Chinese databases 
from the establishment of the database to June 15, 
2024. English databases include PubMed, Web of Sci-
ence, MEDLINE, Embase, Cochrane Central Register of 
Controlled Trials; Chinese databases include Chinese 
National Knowledge Infrastructure (CNKI), Chong-
qing VIP database (CQVIP), and WFSD (Wanfang Data 
Knowledge Service Platform). The Medical Subject Head-
ing (Mesh) headings or keywords as follows: (“markers” 
OR “biomarkers” OR “biological markers” OR “biologi-
cal measures” OR “molecular predictor”) AND (“sepsis,” 
or “severe sepsis,” or “septic shock,” or “Sepsis-associated 
encephalopathy,” or “Sepsis encephalopathy,”). The terms 
were applied to the title and keywords for EMBASE. The 
terms were applied to the title, abstract, and keywords for 
Web of Science. There were no restrictions on language. 
Further, we manually checked references and citations of 
the identified studies to determine if there were any other 
potentially eligible trials.

Inclusion and exclusion criteria
The meta-analysis focused exclusively on studies pertain-
ing to the serum biomarker in patients with SAE. Stud-
ies that met the following criteria were identified: (1) all 
patients should meet the confirmed sepsis or septic shock 
definition, and experiments should be Sepsis-associated 
encephalopathy patients (SAE), controls should be septic 
patients with no-encephalopathy (NE); (2) evaluation of 
main biomarkers such as NSE, UCH-L1, Tau, S100β, and 
GFAP in serum samples. We included both prospective 
and retrospective studies without restrictions. The exclu-
sion criteria were as follows: (1) duplicate publications 
or other types of patients; (2) studies lacking original 
or complete data; (3) animal studies or reviews; (4) not 
involving the selected biomarkers or biomarkers detected 
from other body fluids such as cerebrospinal fluid.

Quality assessment
Two independent reviewers, J.-Y.H. and L.-N.Z., con-
ducted a study quality assessment using the Quality 
Assessment of Diagnostic Accuracy Studies version 2 
(QUADAS-2) assessment tool as recommended by the 
Cochrane Collaboration. The assessment focused on two 
domains: risk of bias and applicability, each with its own 
assessment protocol. The risk of bias within each domain 
was categorized as low, unclear, or high based on the 
methods employed to mitigate bias. Any disagreements 
were discussed and resolved by the entire review team.

Data extraction
Data were independently extracted by three reviewers 
from each included study according to the selection cri-
teria, then reviewed and compared by the first author. 
Any disagreements were resolved by consensus. The 
data extracted included study characteristics (first author 
and year), participant characteristics (age, sex ratio, and 
sample size), and methodological characteristics (assay, 
cutoff, and collection time). For subsequent statisti-
cal analysis, the units of NSE, UCH-L1, Tau, S100β, and 
GFAP were unified. The data extracted encompassed 
various study characteristics (e.g., first author and year), 
participant characteristics (e.g., age, sex ratio, and sample 
size), and methodological characteristics (e.g., assay, cut-
off, and collection time). Further details may be sought 
by engaging in direct communication with the primary 
authors to procure and authenticate the data whenever 
feasible. If there were several serum biomarkers collec-
tion time points in one study, we marked them separately 
at different time points, such as Zhou 2019(1d) and Zhou 
2019 (3d).

Statistical analysis
To assess the diagnostic accuracy and predictive value 
of biomarkers in septic patients, the average serum NSE, 
UCH-L1, Tau, S100β, and GFAP levels were collected 
for those with and without encephalopathy, along with 
their respective standard deviations (SD). Additionally, 
the mean serum NSE levels were obtained for survi-
vors and non-survivors, along with their corresponding 
SD. In instances where mean data were not provided, 
the approach outlined by Wan et  al. was employed to 
calculate the mean and standard deviation (SD) using 
either the median and interquartile range (IQR) or 
median and range [10, 11]. These calculated values were 
then utilized to construct forest plots illustrating the 
standardized mean difference (SMD) of serum NSE, 
UCH-L1, Tau, S100β, and GFAP levels, with the results 
reported as SMD ± the 95% confidence interval (CI) for 
each respective patient cohort. Following the Cochrane 
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review guidelines, the I-squared (I2) statistic was utilized 
to assess the impact of study heterogeneity on the out-
comes of the meta-analysis. The fixed-effects or random-
effects models were used according to the heterogeneities 
(I2 < 50%: fixed-effects models; I2 > 50%: random-effects 
models) [12]. Evaluation of potential publication bias was 
conducted using funnel plots, and sensitivity analysis was 
implemented to verify the dependability and coherence 
of the Meta-analysis results. Statistical software Review 
Manager version 5.4 (RevMan, The Cochrane Collabo-
ration, Copenhagen) and STATA software (version 16.0, 
StataCorp, College Station, TX) were utilized for the 
entirety of the analyses. We considered a P-value of less 
than 0.05 significant for all analyses; for evaluating pub-
lication bias, we considered a P-value greater than 0.1 
significant.

Results
Search results
The process of study selection is depicted in Fig.  1. A 
total of 60,769 relevant studies were identified using the 
search terms (PubMed: 12,589, Web of Science: 21,978, 
EMBASE: 21,686, Cochrane Library: 1415, CNKI: 914, 
WFSD: 1711, CQVIP: 476), with 47,343 duplicates 
excluded. Following a literature search and screening of 
titles and/or abstracts, 13,426 studies were identified, and 
then 13,217 studies were deemed irrelevant to the topic 
and excluded. After a full-text eligibility assessment, 167 
studies were further excluded. Ultimately, 42 studies met 
all inclusion criteria and were included in the meta-anal-
ysis: 15 studies from the English database [13–27] and 27 
studies from the Chinese database [28–54]. The selected 
details of the individual studies are listed in Table  1. In 

Fig. 1 The process of study selection
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the current meta-analysis, as for neuronal cell dam-
age markers, we collected 1315 clinical samples from 
SAE patients and 1463 clinical samples from NE which 
examined serum NSE; 138 clinical samples from SAE 
patients and 144 clinical samples from NE which exam-
ined serum UCH-L1; and 493 clinical samples from SAE 
patients and 497 clinical samples from NE which exam-
ined serum Tau. As for glial cell damage markers, there 
were 1401 SAE clinical samples and 1591 NE clinical 
samples respectively which examined serum S100β; and 
there were 385 SAE clinical samples and 486 NE clinical 
samples respectively which examined serum GFAP. This 
information is very interesting from the clinical aspect of 
serum neurogenic biomarkers selection. Of these, NSE 
and S100β have been most extensively studied and widely 
used.

Quality assessment
An assessment of quality using the QUADAS‐2 tool is 
presented in Figs. 2 and 3, and the quality of the included 
studies varied. After the quality assessment of each bio-
marker, we had fewer concerns about the applicability 
of the included studies to the review question compared 
to concerns about the risk of bias. High-risk of bias was 
mainly focused on index tests and high- applicabil-
ity concerns mostly from reference standards. This can 
probably be explained because different diagnostic crite-
ria of SAE were used in the various studies, and our study 
included only English and Chinese literature, and litera-
tures in other languages were not searched, which may 
have resulted in a language bias.

Meta‑analysis results
Correlation between the levels of serum neurogenic 
biomarkers and SAE
In our study, through exploratory analysis, we found 
associations between some serum neurogenic biomark-
ers and SAE. Whether serum levels of these biomarkers 
(NSE, UCH-L1, Tau, S100β, and GFAP) differ between 
SAE and NE, remains therefore unclear. For this com-
parison, we analyzed serum samples from septic patients 
with and without clinical suspicion of SAE by a meta-
analysis (Fig.  4). Twenty-one studies reported serum 
NSE levels in the SAE group between the NE group. As 
shown, the heterogeneity test demonstrated significant 
differences among studies (I2 = 95%, P < 0.00001); there-
fore, the random-effects model was applied, and there 
was a statistically significant difference between serum 
NSE levels in SAE patients and NE patients [SMD 1.98 
(95% CI 1.55–2.42), P < 0.00001]. There are only two 
studies that reported serum UCH-L1 levels in the SAE 
group between the NE group, and the heterogeneity test 
demonstrated significant (I2 = 89%, P = 0.003). There was 

also a statistically significant difference between serum 
UCH-L1 levels in SAE patients and NE patients (SMD 
1.75 (95% CI 0.90–2.59), P < 0.0001). And there are three 
studies reported serum Tau levels with a lower heteroge-
neity (I2 = 28%, P = 0.19), the levels of serum Tau during 
SAE patients were significantly higher than NE patients 
(SMD 1.14 (95% CI 1.01–1.28), P < 0.00001). In addition 
to that, there was a statistically significant difference 
between serum S100β levels (SMD 1.82 (95% CI 1.45–
2.19), P < 0.00001) and GFAP levels (SMD 3.63 (95% CI 
1.85–5.41), P < 0.0001) in SAE patients and NE patients. 
A summary of the number and characteristics of primary 
articles identified for each biomarker is presented in 
Table 2. In brief, the results of the meta-analysis indicated 
that the serum levels of neurogenic biomarkers in the 
SAE group were significantly higher than those observed 
in the NE group. These findings suggest the differences 
in serum levels of neurogenic biomarkers between septic 
patients with or without SAE.

Comparison of serum NSE levels between survival and death
We further collected studies that detected serum neuro-
genic biomarkers between the surviving and non-surviv-
ing group (Fig.  5). There are also significant differences 
between serum NSE levels (SMD − 1.87 (95% CI − 2.43 
to − 1.32), P < 0.00001); UCH-L1 levels (SMD − 1. 71 (95% 
CI − 2.24 to − 1.19), P < 0.00001); Tau levels (SMD − 0.57 
(95% CI − 0.79 to − 0.35), P < 0.00001); S100β lev-
els (SMD − 1.34 (95% CI − 1.88 to − 0.80), P < 0.00001) 
between surviving and non- surviving group. But there 
were no significant differences in serum GFAP levels 
(SMD − 7.98 (95% CI − 22.23–6.27), P = 0.27) between the 
surviving and non-surviving groups. The sample size of 
GFAP was relatively small, so the results may not neces-
sarily represent survival and death outcomes. It displayed 
septic patients who died had significantly higher serum 
NSE, UCH-L1, Tau, and S100β concentrations at baseline 
than those of survivors.

Publication bias and sensitivity analysis
We assessed the impact of publication bias by visual 
inspection of the funnel plot which is in Fig. 6. Potential 
publication bias may exist in association between levels 
of serum neurogenic biomarkers and SAE due to the fun-
nel plot being asymmetric on visual inspection. Besides 
this, a sensitivity analysis was conducted utilizing a leave-
one-out methodology to assess the robustness of the 
primary analyses. As illustrated in Fig. 7, the association 
between serum neurogenic biomarker levels and SAE 
remained consistent upon the exclusion of any single 
study. This indicates that no individual study significantly 
influenced the overall outcome, thereby affirming the sta-
tistical stability of the meta-analysis findings.
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Table 1 Specific basic characteristics of the main included studies

Study 
and 
year

Biomarkers SAE group NE group Sample 
collection 
time

Assay

No. 
(males/
female)

Age Biomarker levels N0. 
(males/
female)

Age Biomarker levels

Chen 
2019 
[49]

S100β 42 Total: 68 ± 5.4 0.53 ± 0.28 58 0.19 ± 0.09 ICU admis-
sion

ELISA

Cui 
2022 
[28]

NSE; S100β; 
GFAP

79 (45/34) 72.78 ± 4.01 NSE: 24.84 ± 3.28
S100β: 0.53 ± 0.09
GFAP: 2.03 ± 0.47

121 (70/51) 72.86 ± 4.60 NSE: 10.69 ± 4.31
S100β: 0.25 ± 0.06
GFAP: 0.21 ± 0.08

Within 
48 h

FICA

Erikson 
2019 
[25]

S100β 10 (4/6) 62.4 
(49–70.5)

0.30 (0.19–0.59) 12 (10/2) 61.8 
(60.1–78.5)

0.15 (0.07–0.30) When 
CAM‐ICU 
assessed

CLIA

Feng 
2017 
[16]

NSE; S100β 36 (21/15) 52 ± 14 NSE: 1d: 19.28 
(13.00, 30.52); 3d: 
16.03 (9.40, 21.29)
S100β: 1d: 0.33 
(0.15, 0.54); 3d: 
0.19 (0.10, 0.29)

23 (14/9) 57 ± 15 NSE:1d:16.61(7.58,22.01)
;3d:11.39(8.49,15.00)
S100β:1d:0.23(0.16,0.53); 
3d:0.10(0.05,0.17)

1, 3 d CLIA

Guo 
2021 
[17]

NSE; S100β 30 (17/13) 57.61 ± 4.16 NSE: 10.16 ± 2.11
S100β: 0.27 ± 0.06

90(42/48) 56.91 ± 4.85 NSE:8.62 ± 1.62
S100β:0.18 ± 0.04

NA ELISA

Hu 2020 
[51]

S100β 40 NA 1 h: 
0.50351 ± 0.41551
3d: 
0.36315 ± 0.2466
5d: 
0.0683 ± 0.02235

40 NA 1 h:0.14208 ± 0.06362
3d:0.07384 ± 0.02233
5d:0.06617 ± 0.01959

1 h, 3 d, 5 d

Jiang 
2021 
[52]

S100β 26 (18/8) 42.45 ± 3.48 0.16446 ± 0.02921 38(27/11) 41.2 ± 3.5 0.12784 ± 0.02224 4 h ELISA

Kang 
2022 
[53]

S100β 22 (14/8) 27.5 
(11.3–54.5) 
months

1.8 ± 0.2 25 (14/11) 21.0 
(9.0–32.5) 
months

1.1 ± 0.3 Within 
24 h

ELISA

Li 2019 
[46]

S100β 28 NA 0.92 ± 0.15 102 NA 0.76 ± 0.13 1 d ELISA

Li 2022 
[22]

NSE; S100β 21 (13/8) 37 ± 5 NSE: 12 
h:18.4 ± 2.2; 24 h: 
26.3 ± 1.8; 48 h: 
21.8 ± 2.0
S100β: 12 h: 
2.38 ± 0.21; 24 h: 
3.52 ± 0.16; 48 h: 
2.45 ± 0.18

20 (12/8) 38 ± 4 NSE: 12 h:18.4 ± 2.2; 24 h: 
26.3 ± 1.8; 48 h: 21.8 ± 2.0
S100β: 12 h: 2.38 ± 0.21; 
24 h: 3.52 ± 0.16; 48 h: 
2.45 ± 0.18

12, 24, 48 h NA

Li 
2022–2 
[50]

Tau 31 (21/10) 58.29 ± 12.20 1.03 ± 0.33 41(28/13) 61.41 ± 11.18 0.88 ± 0.25 Within 
24 h

ELISA

Liao 
2017 
[48]

S100β 28 (20/8) 55 ± 13 1 h: 0.5 ± 0.24
3d: 0.58 ± 0.33

10 (8/2) 51 ± 16 1 h: 0.14 ± 0.08
3d:0.19 ± 0.11

1 h, 3 d ELISA

Lin 
2024 
[47]

Tau 112(60/52) 44.45 ± 5.38 12 h: 9.56 ± 2.84
24 h: 11.30 ± 3.40
48 h: 9.81 ± 2.92

112(56/56) 45.91 ± 4.60 12 h: 6.70 ± 2.02
24 h: 7.81 ± 2.36
48 h: 6.89 ± 2.07

12, 24, 48 h ELISA

Lu 2016 
[23]

NSE; S100β 34 (24/10) 59.15 ± 8.8 NSE: 10.02 ± 1.48; 
S100β: 1.21 ± 0.15

52 (33/19) 58.39 ± 8.14 NSE: 9.86 ± 0.91; S100β: 
0.98 ± 0.20

NA NA

Nguyen 
2014 
[24]

S100β 107 Total: 65 ± 14 ICU admis-
sion:0.13 (0.06, 
0.49)
4d:0.12 (0.08, 0.24)

21 ICU admission: 0.51 (0.18, 
0.97)
4d: 0.08 (0.04, 0.13)

ICU admis-
sion, 4 d

RIA
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Table 1 (continued)

Study 
and 
year

Biomarkers SAE group NE group Sample 
collection 
time

Assay

No. 
(males/
female)

Age Biomarker levels N0. 
(males/
female)

Age Biomarker levels

Meng 
2020 
[30]

NSE 82 (43/39) 59.54 ± 17.36 9.84 ± 2.21 96 (42/54) 60.32 ± 17.38 7.56 ± 1.72 NA CLIA

Nong 
2021 
[31]

NSE 48 (26/22) 8.13 ± 2.12 20.28 ± 2.69 48 (25/23) 8.68 ± 2.71 12.18 ± 3.27 1 d ELISA

Wang 
2020 
[32]

NSE; S100β 30(17/13) 50.5 ± 2.3 NSE: 27.20 ± 3.25
S100β: 0.28 ± 0.04

30 (19/11) 50.8 ± 2.5 NSE: 15.77 ± 3.50
S100β: 0.17 ± 0.02

1 d WB

Wang 
2022 
[42]

NSE; S100β 45(29/16) 55.42 ± 14.63 NSE: 1d: 21.52 
(14.47, 31.28);3d: 
15.98 (9.36, 21.08)
S100β: 1d: 0.32 
(0.162, 0.579); 3d: 
0.18 (0.116, 0.307)

35 (22/13) 56.37 ± 15.74 NSE: 1d: 15.87 (9.16, 
21.49);3d: 10.74 (8.49, 
16.09)
S100β: 1d: 0.092 (0.068, 
0.181); 3d: 0.063 (0.034, 
0.121)

1, 3 d ELISA

Wu 
2019 
[26]

UCH-L1; 
GFAP

58 NA UCH‑L1: 7.968
(7.018–8.736)
GFAP: 0.696
(0.540–0.871)

47 NA UCH‑L1: 6.396
(5.771–6.977)
GFAP: 0.436
(0.316–0.532)

Within 
24 h

ELISA

Wu 
2020 
[18]

S100β 59(38/21) 54 ± 15 1d: 0.291 
(0.174–0.478)
3d: 0.226 
(0.129–0.447)

45 (32/13) 58 ± 14 1d: 0.157 (0.09–0.218)
3d: 0.089 (0.053–0.136)

1, 3 d ELISA

Tan 
2024 
[45]

NSE 80(42/38) 71.55 ± 6.87 5.25 ± 1.00 97 (50/47) 71.88 ± 6.76 2.81 ± 1.21 1d ELISA

Xiao 
2022 
[33]

NSE 46(20/26) 42.78 ± 8.75 22.18 ± 5.49 103 (46/57) 40.26 ± 9.22 15.30 ± 3.21 ICU admis-
sion

ELISA

Yan 
2019 
[19]

NSE; S100β; 
GFAP

58(44/14) 55.8 ± 16.4 NSE: 24.4(15.7, 
37.5)
S100β: 0.5(0.3, 
1.3)
GFAP: 2.1(0.7, 3.7)

94 (60/34) 55.0 ± 18.3 NSE: 10.6(5.0, 16.6)
S100β: 0.3(0.1,0.5)
GFAP: 0.2(0.1, 0.6)

Within 
24 h

ELISA

Yao 
2014 
[20]

NSE; S100β 48 (33/15) 56 ± 16 NSE: 24.87 (31.73, 
12.73)
S100β: 0.306 
(0.157,0.880)

64 (40/24) 52 ± 17 NSE: 15.49 (9.88–21.46)
S100β: 0.095 (0.066–
0.177)

1 d ECLIA

Yu 2020 
[35]

NSE; S100β 90 (49/41) 53.61 ± 12.74 NSE: 9.48 ± 1.32
S100β: 0.96 ± 0.14

90 (47/43) 52.89 ± 11.65 NSE: 7.62 ± 1.28
S100β: 0.71 ± 0.12

NA ELISA

Yu 2022 
[36]

NSE; S100β 67 (37/30) 70.3 ± 8.3 NSE: 9.62 ± 1.76
S100β: 1.03 ± 0.32

95 (51/44) 69.7 ± 8.6 NSE: 7.32 ± 1.35
S100β: 0.75 ± 0.21

NA ICA

Yuan 
2020–1 
[37]

NSE 128 (77/51) 58 .6 ± 13 .5 13 .86 ± 8 .47 56 (35/21) 56.7 ± 15 .4 5.63 ± 2.91 NA ECLIA

Yuan 
2020–2 
[38]

NSE 52 (21/34) 56.32 ± 7.04 1d: 28.85 (15.78, 
38.37)
3d: 21 (12.47, 
26.22)

16 (8/8) 53.71 ± 4.21 1d: 16.80 (6.61, 21.28)
3d: 11.98 (7.93, 14.34)

1, 3 d CLIA

Zhang 
2016 
[21]

NSE; S100β 29 (20/9) 55.55 ± 12.72 NSE: 43.92 ± 14.66
S100β: 2.50 ± 0.49

28 (13/15) 56.21 ± 12.85 NSE: 13.16 ± 1.43
S100β: 0.61 ± 0.26

Within 
24 h

ELISA

Zhao 
2019 
[54]

Tau 27 (16/11) 64.4 ± 14.2 91.90 ± 35.14 82 (48/34) 57.8 ± 12.5 58.18 ± 29.17 ICU admis-
sion

ELISA
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Table 1 (continued)

Study 
and 
year

Biomarkers SAE group NE group Sample 
collection 
time

Assay

No. 
(males/
female)

Age Biomarker levels N0. 
(males/
female)

Age Biomarker levels

Zhao 
2020 
[40]

NSE; S100β 22 (13/9) 64.7 ± 12.2 NSE: 9.44 ± 1.02
S100β: 0.92 ± 0.11

78 (45/33) 65.1 ± 11.8 NSE: 7.45 ± 1.66
S100β: 0.72 ± 0.22

1 d ELISA

Zhao 
2022‑1 
[43]

NSE; S100β; 
GFAP

28 (16/12) 55.89 ± 16.55 NSE: 9.85 ± 2.40
S100β: 0.99 ± 0.28
GFAP: 
176.23 ± 62.78

32 (18/14) 55.23 ± 16.71 NSE: 7.31 ± 1.32
S100β: 0.61 ± 0.15
GFAP: 45.09 ± 18.76

NA ELISA

Zhao 
2022‑2 
[44]

NSE 46 (24/22) NA 9.12 ± 1.05 117 (62/55) NA 8.53 ± 0.92 ICU admis-
sion

NA

Zhou 
2019 
[41]

NSE 38 (22/16) 53.74 ± 14.35 1d: 17.28 ± 5.47
3d: 23.03 ± 4.96

46 (24/22) 54.66 ± 15.72 1d: 16.87 ± 4.46
3d: 20.43 ± 3.34

1, 3 d ELISA

Zhu 
2022 
[27]

NSE 86 (51/35) 55.45 ± 6.71 9.67 ± 1.03 100 (54/46) 55.48 ± 6.89 6.05 ± 0.34 Within 
24 h

ELISA

SAE Sepsis-associated encephalopathy patients, NE No-encephalopathy septic patients, NA Not announced, h hour, d day, m month, ELISA Enzyme-linked 
immunosorbent assay, ECLIA Electrochemiluminescence immunoassay, CLIA Chemiluminescence immunoassay, ICA Immunochromatography assay, FICA 
Fluorescence immunochromatography assay, RIA Radioimmunoassay WB Western blotting

Fig. 2 Quality assessment of the included studies: risk of bias and applicability concerns summary (A: NSE, B: S100β; C: GFAP; D: Tau; E: UCH-L1)
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Fig. 3 Quality assessment of the included studies: risk of bias and applicability concerns graph (A: NSE, B: S100β; C: GFAP; D: Tau; E: UCH-L1)

Fig. 4 Forest plot evaluating the association between serum neurogenic biomarkers levels and SAE (A: NSE; B: UCH-L1; C: Tau; D: S100β; E: GFAP)
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Discussion
As a result of the complications caused by sepsis, patients 
with SAE experience increased mortality and poor out-
comes, its onset and development are characterized by 
rapid changes, complicated illness state, and difficult 
treatment. In the absence of an unambiguous definition 
and highly accurate diagnostic tools, ICU physicians 
always rely on their own clinical skills and experience 
to diagnose SAE. And exclusion diagnosis was adopted 
for the diagnosis of SAE [55, 56]. We focused on neuro-
genic biomarkers for which promising scientific evidence 
of analytical and clinical validity is available and which 
therefore, are likely to be rapidly transferable to the clini-
cal practice of SAE diagnosis and prognosis; namely NSE, 
UCH-L1, Tau, S100β, and GFAP. This meta-analysis 
aimed to analyze the serum neurogenic biomarkers lev-
els in sepsis patients with or without encephalopathy. We 

further found that the levels of above serum neurogenic 
biomarkers except GFAP were significantly lower in sur-
viving patients as compared to non-surviving patients. 
These findings were consistent throughout the studies. 
The purpose of our study was to explore the diagnostic 
and prognostic value of serum neurogenic biomarkers in 
patients with SAE for predicting the clinical status and 
malignant potential of sepsis, which warrants further 
investigation as a predictive biomarker.

Changes in the condition of sepsis are a dynamic pro-
cess, so peaks of various serum neurogenic biomarkers 
emerged at various ages. And due to the clearance half-
life of different biomarkers varies, and dynamic changes 
occurring as brain injury progresses, the optimal time 
to reflect the markers needs to be determined [57]. For 
example, NSE has a half-life of about 24–30 h and peaks 
at 48–72 h after cardiac arrest, and it has historically 
been recommended to use NSE levels for prognostic 
purposes in the first 72 h after cardiac arrest in coma-
tose cardiac arrest survivors [58, 59]. For most studies in 
our meta-analysis, serum sample collection times were 
ICU admission or within 24 h, so it is still poorly under-
stood whether there is a critical time window for differ-
ent serum neurogenic biomarkers during SAE. A more 
significant number of clinical samples with more clinical 
features-especially different time windows of serum col-
lection time may be required for the upcoming studies.

The clinically selected biomarkers can not only be used 
to confirm the diagnosis, but also determine the severity 

Table 2 Summary of the number and characteristics of primary 
studies identified for each serum neurogenic biomarker

Biomarker No. of studies Heterogeneity Statistical analysis results

I2 SMD (95%Cl) P

NSE 21 95% 1.98 (1.55, 2.42)  < 0.00001

UCH-L1 2 89% 1.75 (0.90, 2.59)  < 0.0001

Tau 3 28% 1.15 (0.97,1.32)  < 0.00001

S100β 27 94% 1.82 (1.45, 2.19)  < 0.00001

GFAP 6 99% 3.63 (1.85, 5.41)  < 0.0001

Fig. 5 Forest plot evaluating the association between serum neurogenic biomarkers levels and outcomes (A: NSE; B: UCH-L1; C: Tau; D: S100β; E: 
GFAP)
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Fig. 6 Funnel plot for evaluating the publication bias from studies on assessment of levels of serum neurogenic biomarkers between SAE and NE 
patients (A: NSE; B: UCH-L1; C: Tau; D: S100β; E: GFAP)

Fig. 7 Sensitivity analyses for studies of serum neurogenic biomarkers between SAE and NE patients (A: NSE; B: UCH-L1; C: Tau; D: S100β; E: GFAP)
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of the disease and provide the basis for subsequent treat-
ment. Aside from the above biomarkers, there are several 
other biomarkers that could be potential for predicting 
the risk of SAE such as neurofilament light (NFL), micro-
tubule-associated protein 2 (MAP2), brain-derived neu-
rotrophic factor (BDNF), mitochondrial DNA (mtDNA), 
and miRNAs [60, 61]. NFL is a cytoskeletal protein exclu-
sive to neurons which has been suggested as a biomarker 
for assessing neuronal cytoskeleton stability and axonal 
damage, it can play a more active role in the clinical man-
agement of SAE [62]. In the original protocol of study 
design, we considered also included NFL in our meta-
analysis, while there are only two studies that reported 
NFL levels in cerebrospinal fluid [63] and plasma [64] 
between the SAE group and NE group after a system-
atic and rigorous search, which prevented the conduct 
of a meta-analysis. As a new type of biomarker, NFL may 
provide new insights for biomarker development of SAE. 
However, more research is needed in the future.

Moreover, there are also other factors that can poten-
tially influence clinical judging when neurogenic bio-
markers are used. For instance, NSE can be generated in 
various tissues within the human body, thereby necessi-
tating the exclusion of non-neurological disease factors 
during the analysis of NSE outcomes. NSE levels are also 
influenced by various factors including age, sex, and mus-
cle injury, among others [65]. Furthermore, NSE cannot 
be detected in hemolyzed samples because it exists in 
erythrocytes and platelets; therefore, hemolysis results in 
increased serum NSE levels, which may affect accuracy 
and clinical results [66]. Consequently, it is imperative to 
comprehensively consider multiple confounders for the 
clinical application of neurogenic biomarkers. Although 
neurogenic biomarkers exhibit high sensitivity and speci-
ficity in certain instances, they should not be regarded as 
a substitute for clinical manifestations or other diagnos-
tic tests. Instead, it necessitates a combined analysis of 
other indicators and clinical manifestations for an accu-
rate assessment. The combination of serum neurogenic 
biomarkers and other serum biomarkers such as procal-
citonin (PCT) and C-reactive protein (CRP) can further 
confirm diagnosis, prognosis, and guide treatment.

Our meta-analysis possesses several notable strengths. 
Firstly, most prior studies only focused on one bio-
marker during SAE [67, 68], this systematic review and 
meta-analysis aimed at evaluating all the potential serum 
neurogenic biomarkers (NSE, UCH-L1, Tau, S100β, 
and GFAP) in patients with SAE, thereby offering valu-
able insights for future clinical practice. Secondly, we 
employed rigorous methodologies and quality assess-
ment tools consistent with evidence-based clinical prac-
tice standards. Furthermore, the results of our sensitivity 
analysis indicated that the pooled effect model is both 

robust and reliable. This meta-analysis is subject to sev-
eral limitations that warrant consideration. Firstly, sig-
nificant heterogeneity was observed which is a common 
challenge in meta-analyses of observational studies, it is 
important to note that the presence of substantial hetero-
geneity among studies poses challenges in determining 
the most effective discrimination cutoff values and opti-
mal sampling collection time. Secondly, publication bias 
could not be entirely eliminated, potentially distorting 
the evidence derived from the included clinical studies 
and thereby limiting the generalizability of the findings 
to other contexts. Lastly, the search criteria employed 
may have overlooked unpublished articles and prelimi-
nary results from ongoing studies. Nevertheless, work is 
continuing on improving the process to eliminate these 
defects. More researches are still needed in the future 
including longitudinal studies and validation in diverse 
populations. It is imperative to acknowledge that the 
use of serum neurogenic biomarkers as a diagnostic tool 
necessitates a comprehensive evaluation in conjunction 
with clinical manifestations and alternative diagnostic 
tests. It is probably better to predict SAE and prognosis 
by sequentially determining a series of neurogenic bio-
markers than by using just one value.

Conclusion
Overall, we identified and selected the five most com-
monly used serum neurogenic biomarkers of SAE: NSE, 
UCH-L1, Tau, S100β, and GFAP. Our meta-analysis sug-
gested that the occurrence of SAE and mortality outcome 
is strongly associated with levels of the above biomark-
ers, which may be used to assist clinical diagnoses and 
the monitoring of the severity or progression of SAE 
patients. However, due to the intrinsic limitations of the 
included studies, the results of this meta-analysis need 
cautious interpretation, and for more details and evi-
dences, further studies are warranted hereafter.
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