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Abstract 

Background Haemorrhagic transformation (HT) is a severe complication after ischaemic stroke, but identifying 
patients at high risks remains challenging. Although numerous prediction models have been developed for HT fol-
lowing thrombolysis, thrombectomy, or spontaneous occurrence, a comprehensive summary is lacking. This study 
aimed to review and compare traditional and machine learning-based HT prediction models, focusing on their devel-
opment, validation, and diagnostic accuracy.

Methods PubMed and Ovid-Embase were searched for observational studies or randomised controlled trials related 
to traditional or machine learning-based models. Data were extracted according to Critical Appraisal and Data Extrac-
tion for Systematic Reviews of Prediction Modelling Studies (CHARMS) checklist and risk of bias was assessed using 
the Prediction model Risk Of Bias ASsessment Tool (PROBAST). Performance data for prediction models that were 
externally validated at least twice and showed low risk of bias were meta-analysed.

Results A total of 100 studies were included, with 67 focusing on model development and 33 on model valida-
tion. Among 67 model development studies, 44 were traditional model studies involving 47 prediction models (with 
National Institutes of Health Stroke Scale score being the most frequently used predictor in 35 models), and 23 studies 
focused on machine learning prediction models (with support vector machines being the most common algorithm, 
used in 10 models). The 33 validation studies externally validated 34 traditional prediction models. Regarding study 
quality, 26 studies were assessed as having a low risk of bias, 11 as unclear, and 63 as high risk of bias. Meta-analysis 
of 15 studies validating eight models showed a pooled area under the receiver operating characteristic curve 
of approximately 0.70 for predicting HT.

Conclusion While significant progress has been made in developing HT prediction models, both traditional 
and machine learning-based models still have limitations in methodological rigour, predictive accuracy, and clinical 
applicability. Future models should undergo more rigorous validation, adhere to standardised reporting frameworks, 
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and prioritise predictors that are both statistically significant and clinically meaningful. Collaborative efforts 
across research groups are essential for validating these models in diverse populations and improving their broader 
applicability in clinical practice.

Systematic review registration International Prospective Register of Systematic Reviews (CRD42022332816).

Keywords Ischaemic stroke, Haemorrhagic transformation, Prediction model

Background
Stroke is the leading cause of death and disability in 
the world [1] and haemorrhagic transformation (HT) 
is a potentially devastating complication after acute 
ischaemic stroke [2]. HT may occur spontaneously dur-
ing acute phase of stroke, or as a complication of inter-
ventions such as thrombectomy, thrombolysis, dual 
antiplatelet, and anticoagulation [3]. HT is associated 
with poor outcome after ischaemic stroke and con-
tributes to the underutilisation of reperfusion thera-
pies [4]. Identifying patients at high risk of HT has so 
far proved challenging [5]. Numerous prediction mod-
els have been developed to predict HT after throm-
bolysis [6], after thrombectomy, or spontaneously, but 
none has yet to be incorporated into consensus clini-
cal guidelines because of their less than satisfactory 
performance [7]. With advancement in technology and 
medical informatics in recent decades, a large volume 
of ischaemic stroke data has been generated and stored 
in structured electronic formats worldwide, facilitat-
ing the use of artificial intelligence approaches such as 
machine learning for developing prediction models [8]. 
It is not immediately clear how these prediction mod-
els have been developed, whether they have been vali-
dated, or how they compare to each other. Given the 
emerging evidence, we aimed to perform a systematic 
review and meta-analysis to identify all traditional and 
machine learning models for predicting HT, describe 
their development and validation, and compare their 
diagnostic accuracies.

Methods
We reported this systematic review according to the 
Preferred Reporting Items for Systematic Reviews and 
Meta-Analyses statement (PRISMA) [9]. The study 
protocol was registered with PROSPERO International 
Prospective Register of Systematic Reviews under reg-
istration number CRD42022332816.

Literature searching
We systematically searched PubMed and Ovid-Embase 
for potentially eligible studies from database inception 
through March 1, 2022. This search was subsequently 
updated on October 16, 2023 and again October 31, 

2024. Search terms included ischemic stroke, ischaemic 
stroke, haemorrhagic transformation, haemorrhagic 
transformation, intracerebral haemorrhage, intracer-
ebral haemorrhage, prediction, predicting, predictive, 
score, and model. The reference lists of potentially eli-
gible studies were manually checked to identify addi-
tional studies. Full search strategies were available in 
Supplement 1.

Eligibility criteria
We included observational studies or randomised con-
trolled trials in Chinese or English that reported new 
models or validation of existing models to predict HT 
after ischaemic stroke, regardless of thrombolysis or 
thrombectomy. We excluded reviews, case studies, edi-
torials, letters, and meeting abstracts. We also excluded 
original research studies if they only explored predic-
tors of HT without constructing a formal model.

Study selection and quality assessment
Two reviewers (Zengyi Zhang and Zhimeng Zhang) 
independently screened the databases for eligible stud-
ies based on titles and abstracts, followed by reading of 
the full text. Disagreements about study inclusion were 
resolved through discussion with a third investigator 
(Yanan Wang or Junfeng Liu). The quality of included 
studies was assessed using the Prediction model Risk 
Of Bias ASsessment Tool (PROBAST) [10]. The risk 
of bias was assessed across four domains of PROBAST 
(participants, predictors, outcome, and analysis), while 
applicability was evaluated across three domains (par-
ticipants, predictors, and outcome).

Data extraction
Two reviewers (Zengyi Zhang and Zhimeng Zhang) 
independently extracted data using a predefined form 
based on the Critical Appraisal and Data Extraction 
for Systematic Reviews of Prediction Modelling Stud-
ies (CHARMS) checklist [11], which included informa-
tion about study characteristics, predictors, and model 
development and validation, as follows: (1) Study 
characteristics: first author, publication year, study 
country, study population, study type, number of cen-
tres, source of data, outcome measure, and events. (2) 
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Predictors: predictors were categorised into various 
domains, including demographics, clinical character-
istics, laboratory examination, imaging findings, and 
genes. (3) Model development and validation: model 
name, modelling methods, calibration, discrimination, 
model validation, and prediction format. Modelling 
methods included logistic regression, literature review, 
and machine learning, etc. Calibration of models was 
conducted by Hosmer-Lemeshow goodness-of-fit test 
or calibration plots. Discrimination of models was 
evaluated using the area under the receiver operating 
characteristic curve (AUC). Model validation included 
internal and external validation. Presentations of mod-
els included risk scores, nomogram, and classifier-
based framework, etc.

Outcome measure
The primary outcome measure was any HT, defined as 
the presence of haemorrhage within the infarct terri-
tory or as parenchymal haemorrhage outside the infarct 
zone. This haemorrhage was not visible on the initial 
CT or MRI scan after ischaemic stroke but was detected 
on follow-up imaging. Secondary outcome measures 
included radiological and clinical subtypes of HT. Radi-
ological subtypes, classified according to criteria of 
European-Australian Cooperative Acute Stroke Study 
(ECASS) II, included haemorrhagic infarction (HI) and 
parenchymal haematoma (PH) [7]. Clinical subtypes con-
sisted of symptomatic intracerebral haemorrhage (sICH) 
and asymptomatic intracerebral haemorrhage (aICH). 
The classification criteria for sICH included the crite-
ria of National Institutes of Neurological Diseases and 
Stroke (NINDS), Safe Implementation of Thrombolysis 
in Stroke-Monitoring Study (SITS-MOST), ECASS II, 
ECASS III, the Third International Stroke Trial (IST-3), 
and Heidelberg Bleeding Classification (HBC) [12].

Statistical analysis
Qualitative data synthesis of prediction models
We categorised the included studies into two types: 
model development studies (which establish and validate 
prediction models) and validation studies (which con-
duct external validation of existing models). A descriptive 
analysis was then performed for each type. For model 
development studies, we summarised study population 
characteristics, types of predictors, types of outcome 
measures, model development methods, and presenta-
tion formats. For studies that use machine learning to 
develop prediction models, we summarised the machine 
learning algorithms. We also evaluated model perfor-
mance, including discrimination and calibration. For 
validation studies, we focused on summarising study 

population characteristics, types of outcome measures, 
and model performance evaluation (including discrimi-
nation and calibration). Additionally, we conducted 
separate qualitative analyses of the risk of bias and appli-
cability for each study type.

Quantitative analysis and comparison of the performance 
of prediction models
For validation studies, we conducted meta-analyses 
based on the type of prediction model and type of HT. 
However, three conditions must be met simultaneously: 
(1) The model has at least two external validation stud-
ies; (2) Risk of bias was assessed as low risk; (3) AUC and 
95% confidence interval (CI) were provided. AUC values 
are interpreted as follows: values less than 0.6 indicate 
poor performance, 0.6–0.69 suggest moderate perfor-
mance, 0.7–0.79 reflect good performance, 0.8–0.89 indi-
cate very good performance, and values greater than 0.9 
demonstrate excellent performance [13]. We calculated 
the pooled effect size using the random effects model and 
evaluated the heterogeneity using the I2 statistic, with 
thresholds of 25%, 50%, or 75% indicating low, moder-
ate, or high heterogeneity, respectively. Publication bias 
was assessed through visual inspection of funnel plots. 
The impact of potential publication bias on pooled esti-
mates was analysed using the ‘trim-and-fill’ method [14]. 
Data were analysed using Stata 18.0 (Stata Corp, College 
Station, TX, USA). P < 0.05 was considered statistically 
significant.

Results
We identified 12,335 articles in our initial database search 
in March 2022 and included 62 of these in our study. An 
additional 28 articles were included from an updated 
search in October 2023, and a final update on October 
31, 2024, identified 10 articles for inclusion. Finally, 100 
studies were included: 67 focused on model development 
[15–81] and 33 on model validation [82–114] (Fig. 1).

Model development studies
Among the 67 model development studies, 44 studies 
developed 47 traditional prediction models, whereas 23 
studies developed machine learning models. A total of 61 
studies included both derivation and internal validation 
stages, while six studies focused exclusively on deriva-
tion. The study populations varied, with ischaemic stroke 
patients treated with thrombolysis comprising the largest 
group (n = 35), followed by those undergoing thrombec-
tomy (n = 14), general ischaemic stroke patients (n = 11), 
without thrombolysis or thrombectomy (n = 5), and with 
thrombolysis or thrombectomy (n = 2). Centre settings 
included 38 multicentre studies, 27 single-centre studies, 
and two studies that did not specify centre status. Most 
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studies assessed any HT (n = 39) as the outcome measure, 
with additional radiological subtypes, such as HI (n = 2) 
and PH (n = 6), and clinical subtypes of sICH (n = 37). 
Criteria for sICH classification included NINDS (n = 13), 
ECASS II (n = 16), and ECASS III (n = 5) (Table  1  and 
Supplemental Table 1).

Of the 44 traditional prediction model studies, logis-
tic regression was the predominant method (40 stud-
ies), while three studies derived models from literature 
reviews, and one study did not specify the model devel-
opment method (Supplemental Table  1). Among the 
23 machine learning model studies, support vector 
machines were the most common algorithm (n = 10), fol-
lowed by logistic regression (n = 8) and random forest 
(n = 7) (Supplemental Table 2).

The most frequent predictors in traditional mod-
els included the National Institutes of Health Stroke 
Scale score (NIHSS; n = 35), blood glucose (n = 23), age 
(n = 18), Alberta Stroke Program Early Computerised 
Tomography Score (n = 15), atrial fibrillation (n = 12), and 
systolic blood pressure (n = 11) (Fig. 2 and Supplemental 
Table  3). Presentation methods for traditional predic-
tion models primarily included risk scores (n = 24) and 
nomograms (n = 17). All studies reported AUC for model 

discrimination, with 38 studies also reporting calibra-
tion results using the Hosmer–Lemeshow test (n = 13), 
calibration plots (n = 14), or both (n = 11) (Supplemental 
Table 1).

Risk of bias was assessed across the 67 studies, with 56 
rated as high risk, 10 as unclear, and only one as low risk. 
Bias was primarily concentrated in the analysis domain, 
with 53 studies exhibiting high risk due to issues such as 
inadequate sample sizes, dichotomisation of continuous 
variables, improper handling of missing data, and reli-
ance on univariate analysis for predictor selection. In the 
participant domain, 19 studies were rated as high risk, 
primarily due to reliance on retrospective data sources. 
All 67 studies demonstrated a low risk of bias in the pre-
dictor domain, and 66 showed a low risk of bias in the 
outcome domain. Applicability was generally favourable 
across participants, predictors, and outcomes (Supple-
mental Table 4).

Model validation studies
All 33 studies focused exclusively on external validation 
of traditional prediction models; no machine learning 
models were included. The primary study population 
was ischaemic stroke patients treated with thrombolysis 

Fig. 1 Flowchart of study selection



Page 5 of 12Wang et al. Systematic Reviews           (2025) 14:46  

(n = 23), with additional groups including general 
ischaemic stroke patients (n = 5), patients treated with 
thrombectomy (n = 4), and a small group with specific 
indications for anticoagulation (n = 1). Centre settings 
included 20 multicentre and 13 single-centre studies. The 
most frequently reported outcome measure was sICH 
(n = 29). Criteria for sICH classification included NINDS 
(n = 15), ECASS II (n = 16), and SITS-MOST (n = 12) 
(Table 1. and Supplemental Table 1). AUC for discrimi-
nation was reported in 31 studies, and calibration was 

reported in 11 studies, with eight using the Hosmer–
Lemeshow test, two using calibration plots or curves, and 
one study using both (Supplemental Table 1).

Of the 33 validation studies, 25 were rated as low risk 
of bias, one as unclear, and seven as high risk. In the par-
ticipant domain, three studies were rated as high risk, 
mainly due to reliance on retrospective data sources. All 
studies showed low risk of bias in the predictor and out-
come domains. In the analysis domain, five studies were 
rated as high risk, with two studies having inadequate 

Table 1 Summary of baseline characteristics of included studies

Abbreviations: aICH Asymptomatic intracerebral haemorrhage, sICH  Symptomatic intracerebral haemorrhage, NINDS National Institutes of Neurological Diseases 
and Stroke, SITS-MOST Safe Implementation of Thrombolysis in Stroke-Monitoring Study, ECASS II European-Australian Cooperative Acute Stroke Study II, ECASS III 
European-Australian Cooperative Acute Stroke Study III, IST-3 The Third International Stroke Trial, HBC Heidelberg Bleeding Classification

Model development studies (n = 67) Model validation studies (n = 33)

Publication year
 2008–2013 9 6

 2014–2019 13 20

 2020–2024 45 7

Type of study
 Derivation 6 0

 Derivation and validation 61 0

 Validation 0 33

Type of prediction model
 Traditional model 44 33

 Machine learning model 23 0

Study population
 General ischaemic stroke 11 5

 Ischaemic stroke with an indication for anticoagulation 0 1

 Ischaemic stroke with thrombectomy 14 4

 Ischaemic stroke with thrombolysis 35 23

 Ischaemic stroke with thrombolysis or thrombectomy 2

 Ischaemic stroke without thrombolysis or thrombectomy 5 0

Multicentre
 Yes 38 20

 No 27 13

 Not reported 2

Type of haemorrhagic transformation
 Any haemorrhagic transformation 39 11

 Radiological category

  Haemorrhagic infarction 2 0

  Parenchymal haemorrhage 6 1

 Clinical category

  aICH 2 2

  sICH 37 29

   NINDS 13 15

   SITS-MOST 3 12

   ECASS II 16 16

   ECASS III 5 2

   IST-3 1 0

   HBC 4 1
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sample sizes (n < 100) and four not fully evaluating pre-
diction model performance. Applicability was generally 
favourable across participants, predictors, and outcomes 
(Supplemental Table 4).

Meta‑analysis of prediction model performance
A total of 15 studies [87, 89–91, 94, 96, 98, 99, 101, 
103, 105, 107, 112–114] were included in the meta-anal-
ysis, encompassing the external validation of eight mod-
els. For predicting any HT, three studies that validated 
seven models identified the ‘Sugar-Early infarct signs-
Dense artery sign-Age-NIHSS’ (SEDAN) score as having 
the highest discrimination (AUC 0.70, 95% CI 0.67–0.73; 
I2 = 0.06%; Fig. 3A). For predicting sICH per NINDS cri-
teria, nine studies validating seven models showed that 
the ‘Haemorrhage After Thrombolysis’ (HAT) score 
and  the ‘Glucose-Race-Age-Sex-Pressure-Stroke sever-
ity’ (GRASPS)  achieved the best discrimination (AUC 
0.69 Fig.  3B). For predicting sICH per SITS-MOST cri-
teria, seven studies validating seven models found simi-
lar AUCs (around 0.68) for the HAT (Haemorrhage after 
Thrombolysis), GRASPS, Multicentre Stroke Survey 
(MSS), and Safe Implementation of Treatments in Stroke 
Symptomatic Intracerebral Haemorrhage Risk (SITS-
SICH) scores (Fig.  3C). For predicting sICH ECASS II 

criteria, ten studies validating seven models demon-
strated that the HAT and MSS score had the best dis-
crimination (AUC 0.69 Fig. 3D). No publication bias was 
detected (Supplemental Fig. 1).

Discussion
This systematic review and meta-analysis identified 47 
traditional and 23 machine learning-based prediction 
models for HT after ischaemic stroke. Traditional mod-
els predominantly employed logistic regression, with key 
predictors such as NIHSS, blood glucose, and age being 
most commonly included. Among these traditional mod-
els, 34 were externally validated, and eight were validated 
at least twice in low-risk studies, achieving pooled AUCs 
of approximately 0.70. In contrast, machine learning 
models exhibited substantial variability in performance, 
with AUCs ranging from 0.42 to 0.99. Regarding study 
quality, 26 studies were assessed as having a low risk of 
bias, 11 as unclear, and 63 as high risk of bias.

Despite the promise of these models, the selection of 
predictors remains a critical challenge. Most traditional 
models rely heavily on statistical methods for predictor 
selection, often without considering clinical relevance, 
which may introduce selection bias [115]. Only a small 
subset of studies reviewed the literature to identify 

Fig. 2 Main categories of predictors reported ≥ 5 times in traditional model development studies. ASPECTS, Alberta Stroke Program Early 
Computerised Tomography Score
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predictors that were both statistically and clinically sig-
nificant [16, 22, 70]. Among the frequently used predic-
tors in traditional models were NIHSS, blood glucose, 
and age, all of which have robust support in the literature 
for their association with HT risk [3, 7, 116–118]. Systolic 
blood pressure was another commonly included predic-
tor and has shown a consistent relationship with HT risk 
[119–122]. Stroke type, such as those based on the Trial 
of ORG 10172 in Acute Stroke Treatment (TOAST) clas-
sification and Oxfordshire community stroke project 
(OCSP) classification, was also frequently used  [35, 45, 
50, 63]; however, the accurate determination of stroke 
type shortly after admission remains challenging and lim-
its their utility in clinical practice. Additionally, genetic 
and imaging predictors, including single-nucleotide pol-
ymorphisms [17, 110] and the Alberta Stroke Program 
Early Computerised Tomography Score, show promise, 
but are often impractical in the acute phase of stroke due 
to time and resource constraints. These challenges high-
light the need for consensus on a core set of reliable and 
feasible predictors that can be standardised across mod-
els to enhance clinical utility.

Regarding the AUC performance of the models, tra-
ditional models showed an AUC around 0.70, indicat-
ing that these models have a moderate or good ability 

to predict HT. While this suggests that they offer reli-
able predictions for identifying high-risk patients, there 
is significant room for improvement in terms of predic-
tive accuracy and clinical utility. In contrast, machine 
learning models exhibited a wide range of AUC values 
(0.42–0.99), reflecting substantial variability in perfor-
mance. Some models demonstrated excellent perfor-
mance (AUC > 0.9), while others had poor predictive 
value (AUC < 0.5). This variation could be attributed to 
differences in model type, the quality of data used, and 
the selection of predictors.

Although machine learning models have the potential 
to improve prediction accuracy, they still face challenges 
related to their clinical feasibility and generalisability, 
especially when incorporating complex data such as 
radiomic and other imaging data [18, 23, 24, 32, 44, 54, 
55, 66, 68, 72, 73, 75–77, 80, 81]. The reliance on these 
data types introduces practical challenges, as the col-
lection and processing of radiomic data can be time-
consuming and resource-intensive. These factors limit 
the implementation of such models in acute stroke care. 
Therefore, future machine learning models should focus 
on simplifying input requirements without sacrificing 
predictive accuracy. Additionally, integrating diverse 
data sources—such as clinical, imaging, and laboratory 

Fig. 3 Meta-analysis of the area under the receiver operating characteristic curve of different models for predicting haemorrhagic transformation 
after acute ischaemic stroke, where such outcome was defined as any type of haemorrhagic transformation (A) or as symptomatic intracerebral 
haemorrhage diagnosed according to the criteria of the National Institutes of Neurological Diseases and Stroke (B), Safe Implementation 
of Thrombolysis in Stroke-Monitoring Study (C), or European-Australian Cooperative Acute Stroke Study II (D)
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variables—may improve model comprehensiveness but 
also presents challenges related to data harmonisation 
and standardisation.

Methodological weaknesses were evident across many 
of the included studies. A substantial proportion relied 
on retrospective data, which is associated with a higher 
risk of bias. Small sample sizes were also common, with 
many studies failing to meet the recommended sample 
size ratio for predictor-to-outcome events. The dichoto-
misation of continuous variables often led to the loss of 
valuable information, further increasing the risk of bias. 
Furthermore, many studies inadequately addressed miss-
ing data, either by excluding patients with incomplete 
data or using inappropriate imputation methods. Calibra-
tion assessments were often insufficient, with 51 studies 
failing to assess calibration altogether, and many that did 
used the Hosmer-Lemeshow test, which may not be suit-
able for complex models involving multiple predictors 
[123]. These methodological issues raise concerns about 
the reliability and generalisability of the models, while 
the PROBAST tool published in 2019 [10] has improved 
bias assessment, its inconsistent application in stud-
ies published after 2019 highlights the need for broader 
adoption of standardised reporting frameworks. Moreo-
ver, future studies should prioritise external validation 
cohorts to ensure that prediction models are robust and 
applicable across diverse clinical settings.

Future research should focus on addressing the 
methodological limitations identified in this review. 
Specifically, studies should prioritise prospective, mul-
ticentre studies with larger, more diverse sample sizes 
to improve generalisability. External validation cohorts 
should be used to ensure the reliability of prediction 
models across various clinical settings. Additionally, 
the selection and definition of key predictors, par-
ticularly stroke classification and imaging biomarkers, 
should be more consistent across studies. Simplifying 
prediction models, while maintaining predictive power, 
will be critical for enhancing their utility in acute stroke 
care. Furthermore, it is essential that future studies 
not only assess the accuracy of models but also their 
clinical feasibility, ensuring that models can be easily 
implemented in routine practice without requiring sig-
nificant resources or specialised expertise.

There are several limitations to this systematic review 
and meta-analysis. First, in addition to AUC, other 
metrics like the net reclassification index, integrated 
discrimination index, net benefit, and decision curve 
analysis [124] can also assess model performance. How-
ever, these metrics were reported in only a few stud-
ies, so we did not conduct a pooled analysis for them. 
Second, there was significant heterogeneity in the 

meta-analysis results. This variability, due to differences 
in study populations, treatment protocols, and outcome 
definitions, limited the ability to perform meaningful 
subgroup analyses. Third, the variability in the predic-
tors used in machine learning models and the lack of 
external validation for these models prevented their 
inclusion in the meta-analysis. Finally, we included only 
studies published in English and Chinese, which may 
have introduced language bias.

Conclusion
In conclusion, while substantial progress has been 
made in developing HT prediction models, both tra-
ditional and machine learning-based models still face 
significant limitations, particularly in terms of meth-
odological rigour, predictive performance, and clinical 
applicability. To enhance their clinical utility, future 
models must undergo more rigorous validation, adhere 
to standardised reporting frameworks, and incorpo-
rate predictors that are both statistically significant 
and clinically meaningful. Collaborative efforts across 
research groups are essential to validate these models 
in diverse patient populations, ultimately improving 
their broader applicability in clinical practice.
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