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Abstract 

Background  The assessment and enhancement of lower limb motor function in hemiplegic patients is of para-
mount importance. The emergence of lower limb rehabilitation robots offers a promising avenue for improving motor 
function in these patients, addressing the limitations associated with traditional rehabilitation therapies. However, 
a consensus regarding their clinical effectiveness remains elusive. Consequently, the objective of this study is to sys-
tematically review the rehabilitation efficacy of lower limb rehabilitation robots on motor function in post-stroke 
hemiplegic patients, thereby providing robust clinical evidence to support their promotion and utilization.

Methods  Eight databases were examined between the start and April 2024. Patients with hemiplegia were included 
in randomized controlled trials to examine the effects of a lower limb rehabilitation robot on their motor function. 
Data extraction, risk of bias assessment, and study screening were carried out independently by two reviewers. Stata 
and Review Manager 5.3 were used for the meta-analysis. Sensitivity analysis was used to determine how reliable 
the findings were. To examine the origins of heterogeneity, meta-regression and subgroup analysis were employed.

Results  This review comprised a total of 41 studies with 3279 participants. In one or more domains, the majority 
of the studies were rated as having a low or uncertain risk of bias. The study’s findings demonstrated that the lower 
limb walking function, balance function, and ability to do activities of daily living improved more in the group receiv-
ing conventional rehabilitation (CR) + robot-assisted therapy (RT) than in the CR group. The Berg Balance Scale (BBS), 
which measures balance function, and the Fugl-Meyer scale (FMA), which measures lower limb motor function, 
were both better in the RT group than in the CR group. Sensitivity analysis proved that the findings were reliable. The 
sample size and publication years were found to be somewhat responsible for the heterogeneity, according to meta-
regression analysis and subgroup analysis.

Conclusion  In stroke patients with hemiplegia, the lower limb rehabilitation robot has demonstrated a certain level 
of clinical success in regaining lower limb function.
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Background
Stroke is one of the leading causes of disability world-
wide and is a cerebrovascular accident brought on by 
disruption of the blood supply to the brain or rupture of 
a blood artery in the brain [1]. Following a stroke, 70% 
of patients frequently experience a slowed or hemiplegic 
gait [2]. Stroke patients are not only less independent due 
to this gait pattern, but they also run the risk of falling 
and developing secondary disability. Consequently, one 
of their most pressing demands is to become more adept 
at walking [3]. The main objective of rehabilitation is to 
restore the lower limbs’ normal movement and balance, 
as these are necessary for normal walking ability [4, 5]. 
In conventional rehabilitation (CR), the therapist assists 
the patient in training using just their hands. However, 
in the early stages of hemiplegia, the patient lacks initia-
tive, which requires a lot of labor and puts a significant 
strain on the therapist [6]. Lower limb rehabilitation 
robot technology is maturing along with rehabilitation 
therapy, which is fantastic news for patients as it helps 
restore function more effectively and eases the strain on 
therapists [7].

Based on the idea of central nervous system plasticity, 
the new robot-assisted training uses multi-parameter 
settings to accomplish multi-functional, physiological 
simulation, and sufficiently repetitive exercises. This is a 
practical, efficient, and secure form of rehabilitation ther-
apy [5, 8, 9]. In a dynamic piece of technology for lower 
limb rehabilitation, the lower limb exoskeleton rehabili-
tation robot helps patients learn new skills like walking, 
balancing, and supported standing. The lower limb reha-
bilitation robot can efficiently maintain the patient’s joint 
mobility and gradually enhance the patient’s gait during 
rehabilitation training through active/passive motion, 
impedance motion, and mirror motion [10].

Hemiplegic patients’ lower limb motor function and 
walking capacity can be considerably improved by lower 
limb rehabilitation robot training, which is active, resist-
ant, repetitive, and weight reducing [11–13]. Through the 
correction of aberrant gait patterns during gait training, 
it offers the sensory input required to improve walking 
ability [14]. Due to individual factors including age, gen-
der, experience, and strength, it can lessen the dispari-
ties in the effectiveness of rehabilitation therapists. The 
process of educating patients to walk can be made more 
efficient and effective by standardizing and proceduraliz-
ing it. Walking dysfunction is the most pressing issue fac-
ing stroke patients. Walking is a basic human ability that 
allows people to live regular lives and work freely.

Patients undergoing lower limb robotic rehabilita-
tion training can meet their everyday needs and ensure 
patient safety by performing stable motions based on a 
normal gait. Additionally, despite the benefits of lower 

limb rehabilitation robots, such as guiding active move-
ment, the majority of research subjects are paraplegic 
patients with spinal cord injuries [15, 16]. Huang et  al. 
discovered that patients’ motor and balance functions 
improved using lower limb rehabilitation robots follow-
ing spinal cord injury [17]. Robotic lower limb therapy 
has not yet shown significant clinical evidence to improve 
lower limb walking abilities and balance in stroke survi-
vors. Also, a variety of robot types are currently on the 
market. By being aware of these variations in robotic 
technology, medical professionals can better target 
patient treatment and selection, leading to more evi-
dence-based medical evidence.

However, there are drawbacks to using robotic devices 
as well. For example, they can limit a patient’s range of 
motion and direction of movement as well as partially 
impair their independence in terms of mobility [18]. 
According to multiple studies, stroke patients who com-
bined CR with robot-assisted gait training improved 
more than those who only utilized CR in terms of walk-
ing capacities [19–21]. However, no difference in results 
between robotic and traditional therapy has been 
observed in other investigations. So, more research is 
required to determine whether using a lower limb reha-
bilitation robot to assist in the recovery of lower limb 
motor function following a stroke is advantageous [22, 
23].

In order to make coherent conclusions, the aim of this 
study is to synthesize the findings of several investiga-
tions into the effect of lower limb rehabilitation robot on 
lower limb motor ability and walking ability of hemiple-
gic stroke patients. This will further improve the clinical 
evidence for the promotion and use of lower limb reha-
bilitation robots.

Method
This review was reported in accordance with the Pre-
ferred Reporting Items for Systematic Reviews and Meta-
Analyses Protocols (PRISMA-P) statement [24]. The 
protocol has been registered in International Prospective 
Register of Systematic Reviews (PROSPERO). The regis-
tration number is CRD42021272657. Further revisions 
and additions will be tracked in PROSPERO.

Eligibility criteria
Inclusion criteria
Studies were included if they met the following criteria:

1)	 the study design was a randomized controlled trial 
(RCT);

2)	 participants were aged 18 or older with unilateral 
limb hemiplegia due to a first-time stroke, with stable 
vital signs and clear consciousness;
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3)	 the intervention was either a robot-assisted therapy 
(RT) alone or in combination with CR;

4)	 the control group received CR only;
5)	 at least one of the following outcomes was reported:
	 Fugl-Meyer Assessment (FMA) was used to evaluate 

the patient’s lower limb motor function, with higher 
scores indicating better motor function (total score 
34 points).

	 Berg Balance Scale (BBS) was used to evaluate the 
patient’s balance ability, and higher scores indicated 
better balance ability (total score 56 points).

	 Modified Barthel Index (MBI) was used to assess 
patients’ activities of daily living. The higher the 
score, the stronger the subject’s self-care ability and 
the better the ability to carry out daily living activities 
(total score 100 points).

	 Both the Functional Ambulatory Classification (FAC) 
and the 6-minute walk test (6MWT) were used to 
evaluate the patient’s walking ability, with higher 
scores representing better walking ability;

6)	 No limitation was imposed upon language, gender, 
age, country or race.

Exclusion criteria
The following exclusion criteria were applied: (1) par-
ticipants with disabilities due to neurological diseases 
other than stroke; (2) reviews, case reports, conference 
abstracts, conference papers, or meta-analysis; (3) stud-
ies that were duplicates or lacked sufficient information 
to extract data.

Search methods
Electronic searches
We searched the PubMed, Embase, Cochrane Library, 
Web of Science, China National Knowledge Infrastruc-
ture (CNKI), Chinese Biomedical Literature Database 
(CBM), Wan Fang Database and China Science, and 
Technology Journal Database (VIP) from inception to 
April 2024. The search strategy utilized both Medical 
Subject Headings (MeSH) terms and free-text words to 
increase accuracy. The search terms were exhaustive and 
related to “stroke,” “lower limb,” “rehabilitation robot,” 
and “randomized controlled trial.” Detailed search strat-
egy for PubMed can be found in Supplemental file, and 
similar strategies were applied to the other electronic 
databases.

Other sources
We additionally searched the gray literature, conference 
papers, reference lists of identified studies, www.​chictr.​
org.​cn, and ClinicalTrials.gov for eligible randomized 
control trials.

Studies’ selection
All retrieved studies were managed using Endnote X9 
and duplicate studies were filtered out. We screened 
studies based on titles and abstracts according to pre-
defined inclusion and exclusion criteria. Subsequently, 
two authors (QH and JW) screened the full text and 
further reviewed them independently. Any discrepan-
cies between the two authors were resolved by consult-
ing a third author (TZ) to reach a consensus.

Data extraction
Two authors independently extracted data using preset 
Excel sheet, including the first author, title, publication 
year, country/region, participant characteristics (sam-
ple size, mean age, sex, and type of stroke), interven-
tions, treatment period, control group measures, and 
study outcomes. The extracted data were recorded in 
PICO format. If necessary, the original authors were 
contacted to request missing data.

Quality assessment
Two authors independently assessed the risk of bias 
according to the recommendations of the Cochrane 
Collaboration [25]. The assessment covered seven 
domains: selection bias, performance bias, detection 
bias, attrition bias, reporting bias, and other biases. 
Each domain was classified into three categories: low 
risk, unclear risk, and high risk. We used RevMan’s 
built-in Cochrane risk of bias assessment tool to assess 
the quality of the included studies, namely ROB1.

Data synthesis
Statistical analysis was performed using Review Man-
ager 5.3 (RevMan) and STATA software (version 15.0). 
Continuous outcomes were assessed using mean differ-
ence (MD). All data were reported with 95% confidence 
intervals (95% CI). Heterogeneity among the included 
studies was assessed using the Chi-squared test and 
the I2 statistic. A fixed-effects model was used when 
p > 0.05 or I2 < 50%; otherwise, a random-effects model 
was applied. Intention-to-treat (ITT) analysis was used 
for missing data. Sensitivity analysis was used to deter-
mine how reliable the findings were. The sources of het-
erogeneity were investigated using meta-regression and 
subgroup analysis. Funnel plots and Egger’s test were 
used to assess publication bias.

Results
Search results
A total of 464 studies remained after deduplication 
using Endnote X9, out of the 808 studies that were first 
found through database searching. A total of 103 papers 

http://www.chictr.org.cn
http://www.chictr.org.cn
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needed to have entire texts evaluated after the titles and 
abstracts were screened. Ultimately, this meta-analysis 
and systematic review comprised 41 papers. Figure  1 
illustrates the thorough screening procedure.

Description of included studies
The primary characteristics of the included studies is dis-
played in Table 1. A total of 41 studies with 3279 partici-
pants were included in this review, 34 [26–59] of which 
were published in Chinese and seven [2, 60–65] in Eng-
lish. There were 33 research [2, 26–48, 50, 51, 53–55, 
58–60, 65] that chose the combination intervention of 
CR and lower limb rehabilitation robot, whereas eight 
studies [49, 52, 56, 57, 61–64] focused solely on the lower 
limb rehabilitation robot.

Thirty-seven studies [2, 26–37, 39–41, 43–54, 56–61, 
63–65] used FMA to evaluate the patient’s lower limb 

motor function. Twenty-six studies [26, 27, 29–31, 35, 
36, 38, 40–42, 45–52, 55, 57–60, 62, 65] utilized the 
BBS to evaluate the patient’s balance ability. Thirteen 
studies [26, 29, 30, 32, 37, 42, 43, 45, 53, 54, 59, 60, 62] 
used MBI to assess patients’ activities of daily living. 
Ten studies [2, 26, 31, 36, 46, 50, 59, 60, 62, 64] used 
FAC, and 10 studies [2, 36, 40, 43, 44, 46, 50, 61, 63, 64] 
used 6MWT to evaluate the patient’s walking ability.

Risk of bias in the included studies
Figures 2 and 3 indicate the risk of bias for 41 studies. 
Li et al. [28] study was judged to be at high risk of bias 
due to very small sample size. All other studies were 
judged to be low risk. Supplemental Table  S1 displays 
the judgment’s specifics.

Fig. 1  PRISMA flow diagram
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Meta‑analysis results
Patient’s lower limb motor function
FMA scores were reported in 37 studies [2, 26–37, 
39–41, 43–54, 56–61, 63–65], assessing lower limb 
motor function in patients. Following treatment, lower 
limb function score of alone RT group was higher than 
CR group (MD = 5.44, 95% CI = 3.12 to 7.76, P < 0.001, 
I2 = 88%, 7 RCT, n = 460, Fig. 4); the CR plus RT group’s 
lower limb function score was higher than the CR group 
(MD = 5.05, 95% CI = 3.90 to 6.20, P < 0.001, I2 = 92%, 30 
RCT, n = 1915, Fig. 5). Owing to its significant variability, 
we opted for a random effects model.

Patient’s ability to balance
BBS was employed in 26 studies [26, 27, 29–31, 35, 36, 38, 
40–42, 45–52, 55, 57–60, 62, 65] to assess the patient’s 
ability to balance. The alone RT group outperformed the 
CR group (MD = 12.22, 95% CI = 3.54 to 20.91, P < 0.001, 
I2 = 96%, 4 RCT, n = 300, Fig.  6); the CR plus RT group 
also outperformed the CR group (MD = 10.64, 95% 
CI = 8.04 to 13.25, P < 0.001, I2 = 97%, 22 RCT, n = 2152, 
Fig. 7).

Patients’ activities of daily living
Thirteen studies [26, 29, 30, 32, 37, 42, 43, 45, 53, 54, 
59, 60, 62] assessed the patient’s activities of daily living 
(ADL) using MBI. Following treatment, the CR group and 
the alone RT group did not vary significantly (MD = 5.30, 
95% CI = −6.31 to 16.91, P = 0.37, 1 RCT, n = 48, Fig. 8). 
The results of the CR plus RT group were superior to the 
CR group (MD = 15.44, 95% CI = 9.84 to 21.04, P < 0.001, 
I2 = 94%, 12 RCT, n = 659, Fig. 9).

Patient’s walking ability
Ten studies [2, 26, 31, 36, 46, 50, 59, 60, 62, 64] used FAC 
to evaluate walking ability. When comparing the CR 
group to the RT group alone, there was no discernible 
difference (MD = 0.37, 95% CI = −0.14 to 0.89, P = 0.15, 
2 RCT, n = 82, Fig.  10). The CR plus RT group’s out-
comes were more successful than those of the CR group 
(MD = 0.81, 95% CI = 0.48 to 1.13, P < 0.001, I2 = 89%, 8 
RCT, n = 472, Fig. 11).

Ten studies [2, 36, 40, 43, 44, 46, 50, 61, 63, 64] dis-
closed the results of the 6MWT, assessing walking abil-
ity in patients. Comparing the results of the RT group 
alone to the CR group, there was no discernible differ-
ence (MD = 24.87, 95% CI = −45.99 to 95.73, P = 0.49, 
I2 = 67%, 3 RCT, n = 168, Fig. 12). The CR plus RT group 
outperformed the CR group (MD = 63.98, 95% CI = 35.50 
to 92.45, P < 0.001, I2 = 99%, 7 RCT, n = 446, Fig. 13).

Sensitivity analysis
The total effect did not change significantly when we 
switched from the fixed-effects model to the random-
effects model. The findings of the investigations were 
also proven to be stable by sensitivity analysis (metaninf ) 
using STATA software. Figs. S1-3 displays the findings of 
the sensitivity analysis.

Meta‑regression analysis and subgroup analyses
Patient’s lower limb motor function (FMA)
A meta-regression study revealed that heterogeneity 
was significantly influenced by sample size and publica-
tion year (P < 0.05, see Table S1). The results of subgroup 
analysis are shown in Figs. S4-5, which can also prove the 

Fig. 2  Risk of bias graph
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influence of sample size and publication years on result 
heterogeneity to a certain extent.

Patient’s ability to balance (BBS)
The results of a meta-regression study showed that the 
treatment duration, sample size, and publication year had 
no bearing on heterogeneity.

Patients’ activities of daily living (MBI)
The primary cause of heterogeneity, according to a meta-
regression analysis, appeared to be the year of publica-
tion (P < 0.05, see Table  S1). But according to subgroup 
analysis, publication years did not significantly affect het-
erogeneity (Figs. S6-7). Our findings should therefore be 
interpreted cautiously.

Patient’s walking ability (FAC)
We were unable to perform meta-regression to inves-
tigate the cause of heterogeneity since there were not 
enough studies (n < 10).

Patient’s walking ability (6WMT)
A meta-regression analysis was not conducted because 
there were not enough studies (n < 10).

Publication bias
Patient’s lower limb motor function (FMA)
The funnel plot is not completely symmetric. The Egger’ 
test suggested that there may exist publication bias 
(P = 0.001). The funnel plot is shown in Supplemental Fig. 
S8.

Patient’s ability to balance (BBS)
The Egger’ test suggested that there was no publication 
bias (P = 0.155). Funnel plot is shown in Supplemental 
Fig. S9.

Patients’ activities of daily living (MBI)
According to the Egger’s test, there was no publication 
bias (P = 0.848). Funnel plot is shown in Supplemental 
Fig. S10.

Patient’s walking ability (FAC)
No publication bias was performed due to insufficient 
number of studies (n < 10).

Patient’s walking ability (6WMT)
No publication bias was performed due to insufficient 
number of studies (n < 10).

Fig. 3  Risk of bias summary
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Discussion
This study extracts the mean difference and standard 
deviation of each study to analyze the rehabilitation 
effect of the lower limb rehabilitation robot to achieve 

consistent results. This systematic review and meta-anal-
ysis indicated that CR plus RT group had more signifi-
cant improvements than CR group in lower limb motor 
function, balance ability, walking ability, and daily living 

Fig. 4  Forest plot for FMA: alone RT vs. CR. (MD = 5.44, 95% CI = 3.12 to 7.76, P < 0.001, I.2 = 88%, 7 RCT, n = 460)

Fig. 5  Forest plot for FMA: CR plus RT vs. CR. (MD = 5.05, 95% CI = 3.90 to 6.20, P < 0.001, I.2 = 92%, 30 RCT, n = 1915)

Fig. 6  Forest plot for BBS: alone RT vs. CR. (MD = 12.22, 95% CI = 3.54 to 20.91, P < 0.001, I.2 = 96%, 4 RCT, n = 300)
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Fig. 7  Forest plot for BBS: CR plus RT vs. CR. (MD = 10.64, 95% CI = 8.04 to 13.25, P < 0.001, I.2 = 97%, 22 RCT, n = 2152)

Fig. 8  Forest plot for MBI: alone RT vs. CR. (MD = 5.30, 95% CI = −6.31 to 16.91, P = 0.37, 1 RCT, n = 48)

Fig. 9  Forest plot for MBI: CR plus RT vs. CR. (MD = 15.44, 95% CI = 9.84 to 21.04, P < 0.001, I.2 = 94%, 12 RCT, n = 659)

Fig. 10  Forest plot for FAC: alone RT vs. CR. (MD = 0.37, 95% CI = −0.14 to 0.89, P = 0.15, 2 RCT, n = 82)



Page 13 of 17Hao et al. Systematic Reviews           (2025) 14:70 	

abilities. We discovered that while the FMA and BBS 
scores of RT group were higher than the CR group’s, 
the scores of FAC, MBI, and 6MWT were not superior 
to the CR group. In summary, we found that the emer-
gence of lower limb rehabilitation robots has had a posi-
tive impact on post-stroke hemiplegic patient, and CR 
combined with RT intervention is more conducive to the 
recovery of their motor functions.

Compared with previous studies [66, 67], this study 
searched more comprehensive and updated databases. 
Additionally, the research objectives and outcome indica-
tors assessed were not entirely the same as before. Pre-
vious meta-analysis results have shown that lower limb 
exoskeleton robots can improve the primary outcome 
measures of lower limb rehabilitation in stroke patients—
FMA and BBS scores and step frequency. However, the 
scores of FAC and 6MWT did not significantly improve 
[68]. This review used FMA, BBS, MBI, FAC and 6MWT 

as outcome indicators. This is because lower limb motor 
dysfunction is a primary problem in hemiplegic patients 
after stroke. Walking is a periodic coordinated move-
ment between multiple joints and muscle groups in the 
human body, which requires sufficient weight-bearing 
capacity and balance function. Enhancing balance func-
tion is crucial for walking since it is directly linked to the 
capacity to carry out everyday tasks [69, 70]. The study’s 
findings demonstrated that CR combined with RT train-
ing can promote and regain patients’ motor function 
more effectively than training with RT by itself. Tradi-
tional rehabilitation training is effective, and combined 
with rehabilitation robot training can restore the patient’s 
motor functions better and faster. Li et al. [71] revealed 
that FAC levels and walking test scores of patients in the 
observation group after intervention were significantly 
better than those in the CR group. This is consistent with 
our study results, suggesting that the combined use of 

Fig. 11  Forest plot for FAC: CR plus RT vs. CR. (MD = 0.81, 95% CI = 0.48 to 1.13, P < 0.001, I.2 = 89%, 8 RCT, n = 472)

Fig. 12  Forest plot for 6MWT: alone RT vs. CR. (MD = 24.87, 95% CI = −45.99 to 95.73, P = 0.49, I.2 = 67%, 3 RCT, n = 168)

Fig. 13  Forest plot for 6MWT: CR plus RT vs. CR. (MD = 63.98, 95% CI = 35.50 to 92.45, P < 0.001, I.2 = 99%, 7 RCT, n = 446). Note: alone RT vs. CR: 
experimental group= rehabilitation robot; control group= conventional rehabilitation. CR plus RT vs. CR: experimental group= CR+rehabilitation 
robot; control group=conventional rehabilitation
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RT and CR therapy is more beneficial to the rehabilita-
tion of patients with functional impairments. In addi-
tion, some researchers conducted exoskeleton robot 
training on stroke patients and found that the patients’ 
walking speed and functional walking level were also sig-
nificantly improved [72]. Similar results have been found 
in the rehabilitation of other neurological injuries. For 
example, Huang et al. [17] applied lower limb rehabilita-
tion robotic technology to evaluate the motor function 
of patients after spinal cord injury. The results showed 
that the 6MWT, BBS, and FMA scores of the observation 
group after the intervention were better than those of the 
control group. However, the difference in MBI scores fol-
lowing the intervention was not significant, confirming 
its positive role in improving patients’ walking function 
and balance function.

According to the results of meta-analysis, the hetero-
geneity of this study was large. We explore the possible 
reasons for the large heterogeneity from the perspective 
of PICO. First of all, in terms of subjects, the sample size 
included in the study is relatively small, and there may be 
bias; the subjects have different age, gender, and sever-
ity of onset, which may also have a certain impact on 
the results. Secondly, in terms of intervention measures, 
different manufacturers and types of lower limb robots 
used by different research societies, and differences in the 
intensity, frequency, and duration of treatment may also 
lead to heterogeneity in the results. As far as the control 
group is concerned, although conventional rehabilita-
tion treatment is carried out, there are still differences 
in the implementation of rehabilitation treatment. Fur-
thermore, different assessment tools are also a potential 
source of heterogeneity. We further verified the robust-
ness of the research results through sensitivity analysis 
and found that although heterogeneity existed, the main 
conclusions were not significantly affected. Meta-regres-
sion analysis and subgroup analysis found that sample 
size and publication year might be the main sources of 
heterogeneity. Generally speaking, the larger the sam-
ple size, the more reliable the results and the more they 
demonstrate the efficacy of lower limb robotics for reha-
bilitation, and vice versa. However, most of the studies 
included in this review have relatively small sample sizes, 
and the results have certain limitations. The heterogene-
ity caused by the year of publication may be due to the 
fact that with the passage of time, lower limb rehabilita-
tion robot technology has become increasingly mature, 
and patients’ lower limb motor function and balance 
function have also improved significantly. We chose these 
two methods for the following reasons: meta-regression 
analyses could analyze the sources of heterogeneity of 
multiple factors at the same time. And subgroup analysis, 
by grouping these factors, allowed for a more intuitive 

comparison of the differences in effect values between 
subgroups, revealing the role of these factors under dif-
ferent conditions. The final results were also shown to 
be similar. The combination of these two methods is sci-
entifically feasible and allows for a more comprehensive 
exploration of the sources of heterogeneity. In addition, 
these variables were selected based on the characteristics 
of the data from the included studies with reference to 
similar studies.

Lower limb rehabilitation robots come in different 
models and manufacturers, divided into end-effector 
robots and exoskeleton robots, but due to insufficient 
data, this study did not perform subgroup analysis on it. 
Lower extremity exoskeleton robots can provide support 
for strength-deficient patients during motion training 
and promote normal gait. Moreover, exoskeleton-based 
rehabilitation therapy can objectively and continuously 
monitor patient’s performance and progress [73, 74]. 
End-effector robot training is effective in improving 
patient’s lower limb strength, balance ability, and endur-
ance [75]. In comparison, exoskeleton robots require 
more time for patients to wear [62]. Bertani et  al. [76] 
found that compared to CR, end-effector robots seem to 
be more beneficial for improving post-stroke limb move-
ment disorders. Previous studies investigated exoskel-
etons or end-effectors for stroke patients, indicating that 
robot-assisted gait training combined with physical ther-
apy and body weight support training appears to be an 
effective intervention for post-stroke gait recovery [77]. 
This is consistent with our findings.

This review has several limitations. First, the qual-
ity of the included studies is generally low, and specific 
reasons need further analysis. Most studies did not 
explicitly describe randomization, blinding, or alloca-
tion concealment, so we could not accurately judge 
whether the authors performed these steps. Future 
clinical trial designs should be more rigorous, and the 
quality of research should be continuously improved. 
Second, meta-regression analysis and subgroup analysis 
found that sample size and publication year were pos-
sible sources of heterogeneity. However, some sources 
of high heterogeneity remain undiscovered. Moreover, 
since most studies did not accurately describe the time 
since onset and the authors could not be contacted, 
these factors were not included in the analysis. Finally, 
we included studies in Chinese or English, so the risk of 
missing data is inevitable.

In conclusion, lower limb rehabilitation robots repre-
sent a highly advanced rehabilitation treatment method 
and a new technology for improving clinical outcomes 
and reducing healthcare costs. Their repetitiveness and 
high intensity make the training more sustained [78]. 
The combination of lower limb robots with traditional 
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rehabilitation therapy can further improve the lower 
limb motor function, balance, and ADL abilities of 
patients with post-stroke hemiplegia, thereby enhanc-
ing their quality of life. The promotion and use of lower 
limb robots provide a new option for the rehabilitation 
of lower limb dysfunction in hemiplegic patients.

Conclusion
The results of this study show that the use of RT com-
bined with CR therapy can better improve the lower 
limb motor function of patients. However, methodo-
logical flaws in previous studies have led to the need for 
higher quality and larger studies to confirm its poten-
tial benefits for future rehabilitation of patients with 
hemiplegia.
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