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Abstract 

Background The standard approach to local inconsistency assessment typically relies on testing the conflict 
between the direct and indirect evidence in selected treatment comparisons. However, statistical tests for inconsist-
ency have low power and are subject to misinterpreting a p-value above the significance threshold as evidence 
of consistency.

Methods We propose a simple framework to interpret local inconsistency based on the average Kullback–Leibler 
divergence (KLD) from approximating the direct with the corresponding indirect estimate and vice versa. Our frame-
work uses directly the mean and standard error (or posterior mean and standard deviation) of the direct and indirect 
estimates obtained from a local inconsistency method to calculate the average KLD measure for selected compari-
sons. The average KLD values are compared with a semi-objective threshold to judge the inconsistency as accept-
ably low or material. We exemplify our novel interpretation approach using three networks with multiple treatments 
and multi-arm studies.

Results Almost all selected comparisons in the networks were not associated with statistically significant incon-
sistency at a significance level of 5%. The proposed interpretation framework indicated 14%, 66%, and 75% 
of the selected comparisons with an acceptably low inconsistency in the corresponding networks. Overall, informa-
tion loss was more notable when approximating the posterior density of the indirect estimates with that of the direct 
estimates, attributed to indirect estimates being more imprecise.

Conclusions Using the concept of information loss between two distributions alongside a semi-objectively defined 
threshold helped distinguish target comparisons with acceptably low inconsistency from those with material incon-
sistency when statistical tests for inconsistency were inconclusive.
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Background
The medical research landscape has undergone unprec-
edented growth, characterised by a surge of primary and 
secondary research of various scientific quality and nov-
elty investigating several healthcare treatments of differ-
ent complexity [1]. The evergrowing scientific evidence in 

quantity and complexity has led to a paradigm shift in the 
evidence synthesis methods, establishing network meta-
analysis (NMA), an extension of pairwise meta-analysis, 
as the statistical tool to address research questions on 
multiple treatments for health technology assessments, 
guideline development, and clinical research [2, 3]. Fast-
paced advances in the methodology of NMA and soft-
ware availability over the past decades have driven the 
rapid increase in publications of systematic reviews with 
NMA [2–4].

Indirect evidence comprises the central component 
of the NMA methodology [5, 6]. It refers to evidence 
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for a pairwise comparison (e.g. C versus A) informed by 
different sets of studies sharing one or more common 
comparators (e.g. B versus A and C versus B) through 
the consistency equation (the effect of C versus A 
equals the effect of B versus A and the effect of C ver-
sus B) [7]. The indirect estimate can yield reliable infor-
mation about the compared treatments, provided that 
the evidence contributing to the consistency equation 
is similar concerning important effect modifiers [8]. 
Access to direct evidence for that comparison allows 
for assessing whether the indirect evidence represents 
the direct evidence. Lack of agreement between differ-
ent sources of evidence has been termed inconsistency 
and can compromise the quality of conclusions [7].

Inconsistency assessment has received great method-
ological attention for pinpointing locations in the evi-
dence network where the different sources mismatch, 
requiring immediate attention [2, 9–11]. Different 
methods have been developed to evaluate inconsist-
ency, widely distinguished into local and global meth-
ods [12]. Methods for local inconsistency evaluation 
have received relatively more attention from systematic 
review authors and methodologists, probably for being 
intuitively more appealing and long-established since 
the introduction of NMA [2, 12, 13]. Local inconsist-
ency evaluation aims at closed loops of evidence in the 
network (there is direct and indirect evidence for the 
involved treatment comparisons), where specific treat-
ment comparisons are targeted to disentangle the direct 
from the indirect effect and calculate their difference, 
known as inconsistency [12]. Typically, the selected 
comparisons are inspected for statistically significant 
inconsistency manifested as a two-sided p-value of the 
Z-test that does not exceed a significance level (usually 
at 5% or 10%) or 95% confidence (credible) intervals 
that exclude a zero inconsistency [12, 14]. We call this 
framework ‘standard decision-making’.

Nevertheless, undue reliance on these measures may 
mask a material inconsistency when the comparisons in 
the loops are insufficiently informed, and between-study 
variance is substantial, as there is likely low power to 
detect a statistically significant inconsistency [15]. On the 
other hand, researchers often misinterpret a statistically 
non-significant inconsistency as proof of consistency. 
Clearly, a different route is needed when interpreting 
results from local inconsistency evaluation to protect 
against (1) missing material inconsistency due to low-
power issues and (2) misinterpreting statistically non-
significant inconsistencies as evidence of consistency, a 
necessity also echoed by other authors and pertains to 
global inconsistency assessment, as well [16].

We draw inspiration from the Kullback–Lei-
bler divergence (KLD) measure to set up a novel and 

straightforward interpretation framework for local 
inconsistency evaluation that (1) shifts from p-values and 
confidence (credible) intervals to the whole distribution 
of the estimated direct and indirect effects and (2) semi-
objectifies the thresholds selected to aid interpretation. 
The KLD is a well-established measure of entropy that 
quantifies information loss between two distributions, D 
for the observed data and A as an approximation of D, by 
using distribution A rather than D [17]. A similar analogy 
can be transferred to the NMA framework when assess-
ing inconsistency locally: how much information is lost 
when the indirect effect replaces the direct effect, and 
vice versa, for a selected comparison. Minimum infor-
mation loss would imply low inconsistency that may not 
threaten the validity of NMA results. A carefully selected 
threshold is required to define minimum information 
loss, and access to relevant empirical evidence may play a 
pivotal role in developing an intuitive decision threshold.

The rest of the article is structured as follows. We first 
present three motivating examples from methodologi-
cal articles on local inconsistency evaluation using the 
node-splitting and back-calculation approaches [14, 18]. 
Then, we introduce our proposed interpretation frame-
work for local inconsistency evaluation based on the 
KLD measure. We demonstrate our framework using the 
motivating examples. Finally, we discuss our framework, 
juxtaposing the evidence from the relevant published 
literature, and conclude with the usefulness of the pro-
posed framework when interpreting the local inconsist-
ency evaluation results.

Motivating examples
The first example is the well-known network of 50 stud-
ies (48 two-arm and 2 three-arm) comparing 8 thrombo-
lytic treatments and angioplasty administered after acute 
myocardial infarction (thrombolytic network): strepto-
kinase (SK), alteplase (t-PA), accelerated alteplase (Acc 
t-PA), streptokinase plus alteplase (SK + t-PA), reteplase 
(r-PA), tenecteplase (TNK), percutaneous translumi-
nal coronary angioplasty (PTCA), urokinase (UK), and 
anistreplase (ASPAC) [19, 20] (Fig.  1a). The outcome is 
binary and refers to death in 30 or 35 days. Dias et al. [14] 
used a fixed-effect model to apply two local inconsist-
ency methods, the back-calculation, and node-splitting 
approaches. The authors reported the posterior mean 
and standard deviation of NMA, direct and indirect log-
odds ratios (OR), the inconsistency estimate, and the 
two-sided Bayesian p-values for each selected compari-
son (split node) (Table 2 in [14]).

Another well-known dataset is the network of smok-
ing cessation treatments, which comprised the second 
example [21]. The network includes 24 studies (22 two-
arm and 2 three-arm) investigating different sets of 4 
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smoking cessation counselling programmes, including no 
intervention, self-help, individual, and group counselling 
(Fig.  1b)). The outcome is binary and refers to smoking 
cessation (yes or no) at 6 to 12  months. Dias et  al. [14] 
applied the node-splitting approach using a random-
effects model. The authors reported the results in line 
with the first motivating example (Table 3 in [14]).

The third example is a network of seven studies (six 
two-arm and one three-arm) investigating four dopa-
mine agonists and a placebo for Parkinson’s disease [22]: 
pramipexole, ropinirole, bromocriptine and cabergoline 
(Fig.  1c). The outcome is the average off-time period 
where Parkinson’s symptoms are out of control. The data-
set was used by van Valkenhoef et  al. [18] to illustrate 

their approach to automatic node splitting. They reported 
a forest plot with the posterior NMA, direct and indi-
rect mean differences (MD), and the two-sided Bayesian 
p-value for inconsistency for the split comparisons (Fig. 6 
in [18]).

Methods
Kullback–Leibler divergence measure for the inconsistency 
extent
In the Bayesian framework, a non-informative prior nor-
mal distribution is assigned to the treatment effects of 
comparisons with the reference treatment (called ‘basic 
parameters’ in the literature [7]). For the relative meas-
ures, this prior distribution applies to the logarithmic 

Fig. 1 Network plots on a thrombolytics (first example) [19, 20], b smoking cessation (second example) [21], and c Parkinson’s disease (third 
example) [22]. Each node refers to a treatment and each edge to an observed (direct) comparison. The nodes’ size and the edges’ thickness are 
proportional to the number of randomised participants in the respective treatments and the number of studies investigating the respective 
comparisons. Numbers on the edges refer to the number of studies. Coloured loops indicate multi-arm studies. Acc t-PA, accelerated alteplase; 
t-PA, alteplase; ASPAC, anistreplase; PTCA, percutaneous transluminal coronary angioplasty; r-PA, reteplase; SK, streptokinase; SK + t-PA, streptokinase 
plus alteplase; TNK, tenecteplase; UK, urokinase
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scale. Since these comparisons’ prior and posterior dis-
tributions are conjugate, their posterior distribution is 
also normal. Hence, the posterior distribution of indirect 
estimates is normal for being a linear combination of the 
basic parameters through the consistency equation [7]. 
At the same time, in the frequentist framework, the esti-
mated direct and indirect effects are typically assumed to 
follow a normal distribution (again, for the relative meas-
ures, this assumption applies to the logarithmic scale). 
Therefore, we consider the KLD measure for two normal 
distributions defined using the following formula [17]:

with Dj
D,I implying the direct estimate (subscript D) is 

approximated by the indirect estimate (subscript I) for 
the target comparison j (i.e. comparison with direct and 
indirect evidence selected to quantify inconsistency), µ̂D 
and µI being the corresponding means in the frequentist 
framework or posterior means in the Bayesian frame-
work, and ŝD and ŝI being the corresponding standard 
errors in the frequentist framework or posterior standard 
deviations in the Bayesian framework. We have dropped 
the comparison index j in the abovementioned param-
eters for ease of presentation.

Then, the KLD measure of approximating the indi-
rect estimate by the direct estimate is provided by the 
following:

The average of Dj
D,I and Dj

I ,D indicates the average 
information loss when approximating one estimate with 
the other for the target comparison j , denoted by Dj . We 
calculate as many Dj as the number of target compari-
sons in a connected network with closed loops that are 
not informed exclusively from multi-arm studies. The Dj 
should not be confused with a distance measure because 
it does not fulfil all the properties of a distance measure.

The probability densities of the distributions are the 
core element of the KLD measure, and the difference 
in their probability densities essentially determines the 
extent of information loss from approximating one dis-
tribution with the other. Intuitively, the more the dis-
tributions of the direct and indirect estimates overlap 
for a target comparison, the less information is lost 
(on average) when approximating one evidence source 
with the other. Hence, the smaller the Dj value, the 
more likely to have low inconsistency. The KLD takes 
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nonnegative values with Dj = 0 indicating that both 
estimates’ distributions overlap perfectly; hence, the 
corresponding target comparison is not associated with 
inconsistency. This would be the ideal scenario; how-
ever, Dj is more likely to be positive, raising the ques-
tion of what constitutes acceptably low information 
loss and, thus, an acceptable inconsistency that does 
not threaten the conclusions.

Setting the threshold of acceptably low inconsistency
Since the KLD measure for two normal distributions (and 
the byproduct Dj ) is a function of the mean and variance 
of the estimated direct and indirect effects, it contains 
all information on their distributions and can be used to 
propose an intuitive decision rule to judge whether Dj 
signals acceptably low or material inconsistency in the 
target comparison. We propose a reference threshold, 
adopting the opinion elicitation framework of Spiegel-
halter et  al. [23] regarding a plausible prior distribution 
for the between-study variance ( τ 2 ) and translating it into 
the inconsistency framework.

Spiegelhalter et  al. [23] described a case of two inde-
pendent parameters, θ1 and θ2 , following the same nor-
mal distribution with variance τ 2 , whose difference 
indicates the effect of a treatment relative to a control; 
hence, θ1 − θ2 ∼ N

(
0, 2τ 2

)
 . Then, the absolute difference 

constrained to be above 0 would follow a half-normal dis-
tribution with scale parameter 

√
2τ : |θ1 − θ2| ∼ HN

(√
2τ

) [23]. 
The median of that half-normal distribution is 
�−1(0.75)×

√
2τ ∼= 0.95τ and represents the median dif-

ference between the maximum and minimum of a ran-
dom pair (θ1, θ2) on the absolute scale [24].

Leveraging this framework for inconsistency would 
correspond to θ1 and θ2 be the direct and indirect effects 
that follow the same normal distribution but with vari-
ances τ 2 and 2τ 2 , respectively. Then, their difference 
would follow a normal distribution with zero mean and 
variance 3τ 2 , describing the inconsistency between 
these two sources. Their absolute difference con-
strained to be above 0 would have a half-normal distri-
bution with scale parameter 

√
3τ and median equal to 

�−1(0.75)×
√
3τ ∼= 1.17τ on an absolute scale, such as 

(standardised) mean difference and relative measures 
on the logarithmic scale. Replacing µ̂D − µ̂I = 1.17τ , 
ŝD = τ , and ŝI =

√
2× τ in Eqs. (1) and (2) and calculat-

ing their average, we obtain an average information loss 
of 0.64. Hence, Dj < 0.64 implies acceptably low incon-
sistency for the target comparison j on the absolute 
scale. Figure 2a illustrates the probability densities of the 
direct and indirect estimates that differ in their location 
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by 1.17τ , assuming τ = 0.10 , which implies low statistical 
heterogeneity [23].

Note that we do not need to define τ as it is cancelled 
out in both equations. Regardless of τ , the average infor-
mation loss remains at 0.64 because the distributions 
overlap enough in the range of values despite their dif-
ferent locations (Fig.  2a). Hence, target comparisons 
with poorly overlapping ranges in the direct and indirect 
estimates will be penalised with an average information 
loss beyond the threshold. Considering a zero difference 
between the direct and indirect effects (i.e. µ̂D − µ̂I = 0 
in both equations) would yield a stricter threshold of 
0.13, irrespective of τ value (Fig. 2b).

Methods implementation and software
We used directly the results on the direct and indirect 
estimates for the target comparisons reported in the first 
two examples (thrombolytics and smoking cessation net-
works) and calculated the corresponding Dj values. The 
third example (Parkinson ‘s disease) was analysed in the 
MD scale. We re-ran this example in the same scale using 
the default arguments of the gemtc R package [25] (as 
considered by the authors [18]) because the article did 
not provide the posterior standard deviation of the direct 
and indirect estimates.

The rnmamod R package [26] was used to calculate the 
Dj for the target comparisons (kld_measure function), 
infer the magnitude of inconsistency as acceptably low or 

material for the threshold of 0.64 (kld_inconsist-
ency or kld_inconsistency_user functions), and 
create all figures (via the former two functions). 

Results
Thrombolytics network (first example)
Figure  3 presents the posterior densities of the direct 
and indirect log ORs of 14 target comparisons obtained 
using the node-splitting approach (Table 2 in [14]). The 
grey area and vertical line refer to the inconsistency’s 95% 
interval and posterior mean in each target comparison. 
The plots have been sorted in ascending order of the Dj 
values (the superscript has been dropped from the plots 
for simplicity). There was statistically significant incon-
sistency only for ASPAC versus Acc t-PA based on the 
95% interval for inconsistency.

The target comparison UK versus t-PA had the lowest 
Dj value at 0.15, below the threshold of 0.64, exhibiting 
acceptably low inconsistency (Fig.  3). The subsequent 
target comparison (UK versus Acc t-PA) had opposing 
conclusions at the posterior mean sign regarding the 
effectiveness of the compared treatments; however, the 
distributions had posterior means close to 0 and over-
lapped enough, yielding an average information loss close 
to but below the threshold.

For the remaining target comparisons, direct and indi-
rect estimates yielded the same effectiveness conclu-
sions (at the posterior mean sign); however, they differed 

Fig. 2 a Probability densities of the direct (blue line) and indirect (black line) log ORs for a fictional target comparison assuming µ̂D − µ̂I = 1.17τ 
(inconsistency evidence) and τ = 0.1 (low statistical heterogeneity [23]), yielding an average information loss ( D ) of 0.64. b Probability densities 
of the direct (blue line) and indirect (black line) log ORs for a fictional target comparison assuming µ̂D − µ̂I = 0 (consistency evidence) and τ = 0.1 
(low statistical heterogeneity [23]), yielding an average information loss of 0.13 (stricter threshold)
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substantially in the posterior mean and standard devia-
tion in most target comparisons, exhibiting poor overlap 
in their posterior densities (especially the last six target 
comparisons) and, hence, a substantial average informa-
tion loss (Fig.  3). ASPAC versus Acc t-PA had an enor-
mous Dj value at 134.08: the direct log OR was around 
nine times larger than the indirect log OR and seven 
times more imprecise, leading to an immense informa-
tion loss due to no overlap of the posterior densities 
(Fig. 3).

Figure 4 illustrates a bar plot with the percentage con-
tribution of Dj

D,I (blue bars) and Dj
I ,D

 (black bars) to the 
total information loss ( Dj

D,I + D
j
I ,D

 ) for each target compari-
son. The bars are sorted in ascending order of the target 
comparisons’ Dj values. The Dj

D,I and Dj
I ,D values appear 

in the parentheses. In target comparisons with trivial 
overlapping of their direct and indirect densities (the last 
six target comparisons in Fig. 3), approximating an overly 
imprecise distribution contributed almost exclusively to 
the total information loss.

Additional file  1: Figure S1 presents the density plots 
for the results from the back-calculation (Table 2 in [14]), 
also pointing to material inconsistency in the network for 
the same target comparisons. Overall, the Dj values were 

very similar to those from the node-splitting approach, 
except for ASPAC versus t-PA, SK + t-PA versus Acc 
t-PA, and ASPAC versus SK, where the Dj values were 
notably smaller under the back-calculation approach for 
yielding indirect posterior densities much closer to the 
direct posterior densities, exhibiting a comparatively bet-
ter overlapping.

Smoking cessation network (second example)
The smoking cessation network had six target compari-
sons (Fig. 5, Table 3 in [14]). All target comparisons were 
associated with statistically nonsignificant inconsist-
ency since the 95% intervals for inconsistency included 
the null value. The posterior densities of the direct and 
indirect log ORs overlapped almost perfectly for group 
counselling versus self-help, yielding a low Dj value at 
0.03 and indicating very low average information loss 
and trivial inconsistency. The subsequent two target 
comparisons (self-help and group counselling versus no 
contact) exhibited a higher average information loss at 
0.21 and 0.27, respectively, for having somewhat different 
posterior means and standard deviations; however, they 
covered a similar range of log ORs overall, yielding an 
acceptable inconsistency at the threshold of 0.64 (Fig. 5).

Fig. 3 Posterior densities of the direct (blue line) and indirect (black line) log ORs for 14 target comparisons from the thrombolytics network (first 
example). The grey area and vertical line indicate the inconsistency’s 95% interval (approximated using the reported posterior mean and standard 
deviation) and posterior mean. The average information loss ( Dj ) appear at the top left of each plot. The plots have been sorted in ascending order 
of the Dj values. The x-axis and y-axis values vary across all plots. Green and orange Dj values indicate acceptably low and material inconsistency. The 
threshold of 0.64 was employed
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The direct and indirect posterior densities of indi-
vidual counselling versus self-help partially overlapped 
since positive log ORs of the indirect estimate received 
the most density, whereas the direct estimate was almost 
centred at zero, leading to an average information loss of 
0.60, very close to the threshold (Fig. 5). For the remain-
ing two target comparisons, the direct and indirect poste-
rior densities had poor overlap as they covered a different 
range of log ORs greatly (group versus individual coun-
selling) or had substantially different probability densities 
for the common range (individual counselling versus no 
contact), resulting in substantial average information loss 
that greatly exceeded the threshold of 0.64, suggesting 
material inconsistency (Fig. 5).

The percentage contributions of Dj
D,I and Dj

I ,D to the 
total information loss were less extreme than those 
observed in the first example (Additional file  1: Figure 
S2). The less the posterior densities differed in their dis-
persion and location, the closer to 50% were the contri-
butions of Dj

D,I and Dj
I ,D , which is evident for the first two 

target comparisons. In target comparisons with accept-
ably low inconsistency, the Dj

D,I and Dj
I ,D values ranged 

from 0.03 to 0.78 and 0.03 to 0.42, respectively, attrib-
uted to the overall sufficient overlapping of the posterior 
densities.

Parkinson’s disease network (third example)
Figure  6 illustrates the posterior densities of direct and 
indirect MDs for four target comparisons in the Parkin-
son’s disease network. All target comparisons were asso-
ciated with statistically nonsignificant inconsistency. The 
target comparisons ropinirole (C) versus placebo (A) and 
bromocriptine (D) versus pramipexole (B) were associ-
ated with the lowest average information loss for having 
sufficiently overlapping probability densities, yielding Dj 
values below the threshold of 0.64. In bromocriptine (D) 
versus placebo (A), the direct and indirect probability 
densities indicated different conclusions in the treatment 
preference, with the direct MD tending to favour bro-
mocriptine over placebo; however, the posterior densities 
had good overlapping concerning the range of MDs, and, 
hence, the average information loss suggested an accept-
able inconsistency at 0.21 (Fig.  6). In this target com-
parison, the Dj

D,I and Dj
I ,D values were small, and their 

contributions to the total information loss were quite bal-
anced (Additional file 1: Figure S3).

The posterior densities of direct and indirect MDs for 
bromocriptine (D) versus ropinirole (C) differed substan-
tially in the range of MDs and their densities: the indi-
rect MD tended to favour bromocriptine over ropinirole 
with enough uncertainty, but the direct MD was almost 

Fig. 4 Bar plots with the percentage contribution of approximating direct posterior density (blue bars, Dj
D,I ) and indirect posterior density (black 

bars, Dj
I,D ) to their total information loss ( Dj

D,I + D
j
I,D ) for each target comparison (x-axis) from the thrombolytics network (first example). Percentage 

contributions appear outside the parenthesis. The plots have been sorted in ascending order of the Dj values. The Dj
D,I and Dj

I,D values appear 
in the parentheses
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centred at zero and more precise (Fig.  6). As expected, 
the Dj value at 0.89 suggested substantial information 
loss and, thus, material inconsistency. Approximating 
the imprecise indirect posterior density with the more 
precise direct posterior density led to substantial infor-
mation loss ( Dj

I ,D = 1.34 versus Dj
D,I = 0.44 ) and a 75% 

contribution to the total information loss for bromocrip-
tine (D) versus ropinirole (C) (Additional file  1: Figure 
S3).

Discussion
The present study proposed an intuitive framework to 
interpret local inconsistency based on the well-known 
KLD measure and a semi-objective threshold of accept-
ably low inconsistency. The proposed framework is 
straightforward to implement, as the only requisite is the 
results from a local inconsistency evaluation method. 
Quantifying the extent of distribution overlap in terms of 
information loss to gauge the closeness of the direct and 
indirect estimates is a novel contribution to the method-
ological framework for consistency evaluation.

In line with Dias et  al. [14], in the first example, we 
judged the target comparison ASPAC versus Acc t-PA 
to have material inconsistency for having an immense 

Dj value at 134.08, which aligned with the very low 
Bayesian p-value at 0.001 (Table 2 in [14]). In contrast 
to Dias et  al. [14], we found many more target com-
parisons with material inconsistency, especially those 
with Dj values that greatly exceeded 10. The direct 
and indirect distributions of these target comparisons 
hardly overlapped. In the second example, we found 
acceptably low inconsistency in four out of six target 
comparisons. Overall, our findings agreed with those 
of Dias et  al. [14]; our framework revealed material 
inconsistency for group versus individual counsel-
ling ( Dj = 4.95 ), which aligned with the low Bayesian 
p-value at 0.07 (Table 3 in [14]).

Lastly, our conclusions concurred with those of van 
Valkenhoef et al. [18] that inconsistency may not be con-
cerning overall in the network (third example). However, 
we judged one comparison to be associated with poten-
tially material inconsistency for having Dj = 0.89 that 
slightly exceeded the threshold of 0.64. For the common 
range of values, the distributions differed notably in their 
probability densities, and we would prefer to juxtapose 
this target comparison with the remaining network to 
determine whether concerns about material inconsist-
ency are justified.

Fig. 5 Posterior densities of the direct (blue line) and indirect (black line) log ORs for six target comparisons from the smoking cessation 
network (second example). The grey area and vertical line indicate the inconsistency’s 95% interval (approximated using the reported posterior 
mean and standard deviation) and posterior mean. The average information loss ( Dj ) appear at the top left of each plot. The plots have been 
sorted in ascending order of the Dj values. The x-axis and y-axis values vary across all plots. Green and orange Dj values indicate acceptably low 
and material inconsistency. The threshold of 0.64 was employed
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The stochastic search inconsistency factor selec-
tion (SSIFS) is another contribution to detecting pos-
sible inconsistency in a network that deviates from the 
‘standard decision-making framework’ [27]. This Bayes-
ian approach treats the inconsistency factors as variables 
in a regression model and evaluates network consist-
ency by utilising variable selection techniques [27]. Each 
inconsistency factor is included in the NMA model with 
a probability; lower inclusion probabilities of the incon-
sistency factors suggest a higher likelihood of network 
consistency [27]. SSIFS evaluates network consistency 
globally and locally by identifying the sources of incon-
sistency using posterior odds and posterior inclusion 
probabilities [27]. Prior knowledge regarding network 
consistency and practical significant differences between 
direct and indirect evidence can be incorporated into the 
inconsistency detection process, making this approach 
particularly attractive [27]. The authors also used the 
smoking cessation network to exemplify their novel 
approach to inconsistency, and our conclusions con-
curred overall.

The analysis framework of Dias et  al. [14] and van 
Valkenhoef et  al. [18] for inconsistency evaluation also 
differed from the ‘standard decision-making frame-
work’. The authors employed several statistical tools and 

illustrations to understand to what extent consistency 
governed the analysed networks, offering a thorough 
evaluation, which served as an important reminder that 
inconsistency evaluation should be a multifaceted pro-
cedure, including model fit and comparison and out-
lier detection, apart from merely statistical testing (the 
current status quo) [14, 18]. Nevertheless, the authors 
judged the distribution overlap of the compared evidence 
sources based on subjective grounds, rendering our semi-
objective interpretation framework a valuable aid in situ-
ations where judgements are less obvious (e.g. the target 
comparisons with Dj ≥ 0.64 in Figs. 5 and 6).

The CINeMA (Confidence in Network Meta-Anal-
ysis) framework also implements a multifaceted 
approach to determine any concerns regarding incon-
sistency in a connected network, however, grounded 
mostly on the ‘standard decision-making framework’. 
Specifically, CINeMA considers the closeness of the 
direct and indirect estimates, their position about the 
clinically defined range of equivalence, and whether 
the p-value of global or local inconsistency exceeds the 
significance threshold to determine whether there are 
major, some, or no concerns with inconsistency (inco-
herence in the GRADE ‘language’) [28]. This frame-
work is attractive for using clinical judgment to define 

Fig. 6 Posterior densities of the direct (blue line) and indirect (black line) MD for four target comparisons from the Parkinson’s disease network 
(third example). The grey area and vertical line indicate the inconsistency’s 95% credible interval and posterior mean. The average information loss 
( Dj ) appear at the top left of each plot. The plots have been sorted in ascending order of the Dj values. The x-axis and y-axis values vary across all 
plots. Green and orange Dj values indicate acceptably low and material inconsistency. The threshold of 0.64 was employed
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the range of equivalence and being straightforward to 
apply. However, like Dias et al. [14], CINeMA relies on 
subjective judgements about the closeness of the direct 
and indirect estimates and their confidence intervals, 
which may challenge the reproducibility of the judge-
ments. Furthermore, reliance on the p-value may 
perpetuate the misinterpretation of statistically nonsig-
nificant inconsistency tests as evidence of consistency. 
Our proposed interpretation framework addresses both 
limitations and can be used to define thresholds that 
reflect the level of concern about potential inconsist-
ency more reliably.

We proposed a semi-objective threshold based on the 
assumption that the variance of the normal distribu-
tion for the indirect effect is twice the variance of the 
(typically assumed) normal distribution for the direct 
effect, and the inconsistency is a function of that vari-
ance. Assuming an even larger variance proportionally 
would yield a much larger threshold, signalling accept-
ably low inconsistency more frequently. Therefore, 
carefully determining the threshold of acceptably low 
inconsistency is pivotal for the reliability of the conclu-
sions derived from the proposed framework and ideally 
should incorporate clinical judgements. For instance, 
the analysts could replace µD − µI , sD , and sI in Eqs. 
(1) and (2) with clinically plausible values that align 
with the investigated clinical field and reflect clinically 
unimportant inconsistency to obtain a contextualised 
threshold for Dj.

Furthermore, attentively selecting the method to evalu-
ate inconsistency locally is also crucial to the reliability 
of the conclusions using our proposed framework. For 
instance, in networks with multi-arm studies, the loop-
specific approach is unsuitable for not properly handling 
multi-arm studies [29]. Then, accompanying the loop-
specific results with our proposed approach will more 
likely add ‘noise’ than value. Dias et al. [14] discussed the 
limitations of using the back-calculation approach in a 
network with multi-arm studies (the thrombolytics net-
work), where this approach yielded quite different results 
from the node-splitting approach for target comparisons 
found in multi-arm studies. However, both approaches 
pointed to potential inconsistency in the network [14].

Published empirical studies have relied on the ‘stand-
ard decision-making framework’ to gauge the common-
ness of inconsistency [16, 30]. Given the low statistical 
power of the inconsistency tests, inconsistency may be 
more prevalent than already reported. Incorporating 
our interpretation approach into the analysis plan of an 
empirical study would more reliably capture the extent of 
local inconsistency as it warrants an informed decision 
about potential (in)consistency when statistical tests are 
inconclusive.

Conclusions
The ‘standard decision-making’ approach to inconsist-
ency assessment cannot infer consistency, as a p-value 
above the significance threshold is not evidence of 
consistency. Concluding treatment equivalence or 
consistency in a network requires a carefully designed 
procedure that also grants equivalence statements. 
The available tests for local and global inconsistency 
can only provide evidence of inconsistency when suf-
ficiently powered. Consistency evaluation requires a 
multifaceted approach that extends beyond statistical 
testing. Our semi-objective interpretation framework 
for inconsistency is a valuable addition to the toolkit 
for a multifaceted inconsistency assessment as it aids 
in uncovering the parts of the network associated with 
(in)consistency when statistical tests are inconclusive 
by juxtaposing the information loss from the indirect 
and direct probability densities with a carefully selected 
threshold of acceptably low inconsistency.
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